
Article https://doi.org/10.1038/s41467-024-54342-7

Structure, motion, and multiscale search of
traveling networks

Nate J. Cira1 , Morgan L. Paull2,10, Shayandev Sinha3,11, Fabio Zanini4,
Eric Yue Ma 5,6,7 & Ingmar H. Riedel-Kruse 8,9

Network models are widely applied to describe connectivity and flow in
diverse systems. In contrast, the fact that many connected systems move
through space as the result of dynamic restructuring has received little
attention. Therefore, we introduce the concept of ‘traveling networks’, and we
analyze a tree-basedmodel where the leaves are stochastically manipulated to
grow, branch, and retract. We derive how these restructuring rates determine
key attributes of network structure and motion, enabling a compact under-
standing of higher-level network behaviors such as multiscale search. These
networks self-organize to the critical point between exponential growth and
decay, allowing them todetect and respond to environmental signalswith high
sensitivity. Finally, we demonstrate how the traveling network concept applies
to real-world systems, such as slimemolds, the actin cytoskeleton, and human
organizations, exemplifying how restructuring rules and rates in general can
select for versatile search strategies in real or abstract spaces.

Networkmodels play a key role in representing and understanding the
characteristics of complex connected systems. Networks consist of
‘vertices’ connected by ‘edges’ (also termed ‘nodes’ and ‘links,’
respectively), and networks can be generated in different ways, for
example, by randomly1, regularly, or semi-randomly2–4 connecting
existing vertices to each other. Processes of interest can often be
understood using only the connectivity informationbetween vertices5;
however, additional constraints arise in spatial networks where each
vertex is also embedded inside a real or abstract space6. Networks can
be static or dynamically develop over time, for example, by iteratively
branching froman initial seed7–14 as happenswith neuronal dendrites14,
branched organs15, or diffusion limited aggregation of particles8.
Movement in the context of networks is usually discussed in terms of
processes occurring on the network, for example, an agent walking
over a network16,17 or information or disease spreading through a
network18,19. Despite significant work on temporal networks20, sur-
prisingly, there appears to be little systematic work on how networks

themselves travel through space away froman initial locationwithout a
permanently rooted anchor point.

Results
Traveling networks
We therefore introduce the concept of ‘traveling networks’—con-
nected systems that change their location in space over time by rear-
ranging their structure. This class of networks is motivated by various
real-world systems, for example: (1) The slime mold Physarum poly-
cephalum traverses the environment in search of food by rearranging
its branched network (Fig. 1a, supplementary movie 1)21,22. (2) The
subcellular actin cytoskeleton network drives eukaryotic cell move-
ment through polymerization and depolymerization of its filaments
(Fig. 1b)23–25. (3) Human corporations move through high-dimensional
market spaces by creating new products and phasing out older ones
(Fig. 1c)26–30. For each of these systems, a characteristic time scale τr
exists after which none of their original structure remains and the
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network occupies a distinct new region of space (Fig. 1a–c). Thismakes
these networks distinct from other well-studied networks that are able
to dynamically grow and branch but do not leave their original rooted
location7,9–14.

A traveling network model
This motivates a deeper investigation into the constraints and
opportunities experienced by such traveling networks. Here we pro-
pose and analyze a tractable model (Fig. 1d) that involves a tree with
maximum degree (number of edges connected to a vertex) of three
(supplementary sections 2, 3). The leaves (degree-one vertices) are
stochastically manipulated and can be in either a ‘free’ or a ‘retracting’
state. Free leaves undergo three possible manipulations: (1) growth by
adding unit length ΔL at rate kg; (2) branching at rate kb, by creating
two new free leaves—each with an edge of length ΔL at an angle ± α/2
from the previous edge, thereby converting the original leaf into a
degree-three vertex; and (3) switching by becoming a retracting leaf at
rate ks. Retracting leaves undergo only one manipulation: removing
length ΔL at rate kr until they reach a degree-three vertex, upon which
they are eliminated and generate a degree-two vertex. In this model,
retracting leaves cannot switch back tobeing a free leaf. The amountof
resources available to the system is represented by the overall size of
the network, S, which is defined as the sum of all the edge lengths and
implies that more spatially distant vertices require more resources to
connect. S can be constant, or it can change over time depending on
the system and external conditions. As the following analysis shows,
the model’s restructuring rules lead to networks that exhibit char-
acteristic dynamic structures (supplementary section 4), that travel

through space (supplementary sections 5, Fig. 1e, supplementary
movie 2), and that effectively search this space (supplementary sec-
tions 6). Thismodel clearly neglectsmany aspects of anyparticular real
system (Fig. 1a–c), yet it proves to be very informative for analyzing
many key properties and behaviors of general importance to traveling
networks.

Network structure and criticality
We first systematically analyzed the network structure and dynamics
(supplementary section 4). The network structure is characterized by
the number of each of the different vertex types and their connectivity
and can be crucial to network performance. We focused on the case
where the network size S is constant, which implies that kb = ks. We
considered a representation that is based on rates that are normalized
by kr (i.e., KB≔ kb/kr, KG≔ kg/kr, Ks = ks/kr, supplementary section 4.5.1).
This allowed us to analyze the structure and behavior for networks of a
given size in a phase space that is determined by just two independent
restructuring parameters, i.e., KB≔ kb/kr, KG≔ kg/kr.

To visualize the network and confirm analytical results, we
implemented a stochastic simulation embedded in 2D space (meth-
ods, supplementary section 8), though much of our analysis gen-
eralizes to higher spatial dimensions. We set kb = ks, and we
numerically imposed preservation of size S by dynamically modifying
the likelihood of switching up or down as needed (methods, supple-
mentary section 8.1). We found that arbitrary starting configurations
converge to steady state dynamics in which branching, growing, and
retracting leaves cause the network to travel through space (supple-
mentary movie 2). The observed network structures vary
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Fig. 1 | ‘Traveling networks’ that actively traverse space via dynamic restruc-
turing are found in diverse contexts. a–c Examples of traveling networks: a slime
molds (2D real space)21,b actin cytoskelton (3D real space)23, chumanorganizations
(high dimensional abstract space, depicting select products of Nokia Corporation
over time)51–53. dModel of a traveling network based on an acyclic binary tree with
two leaf types. ‘Free leaves’ (cyan) branch at rate kb, grow at rate kg, and switch at

rate ks, to become ‘retracting leaves’ (red) which retract at rate kr until they reach a
degree-three vertex. The branching angle is set byα, and the size of the network S is
the sum of the edge lengths L. e The model from (d) results in a traveling network
with conceptual similarity to (a–c). Time in arbitrary units. (a–c, e: Red arrow
illustrates how networks travel through space; τr represents typical time scale after
which the network has completely remodeled itself). (Image b inspired by23,54).
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characteristically with KB and KG as indicated by the number of
retracting (NR), free (NF), and total (N1 =NF +NR) leaves (Fig. 2a–d,
supplementary movie 3); networks with high KB have more retracting
leaves; if both KG and KB are small, most leaves are free, and a large
ratio of KG : KB results in longer edges, fewer vertices, and fewer total
leaves.

We then derived a set of analytical relationships between
the model parameters that ultimately fully describe the network
structure (supplementary sections 4.1–4.4), and we confirmed these
relationships with simulations (methods, supplementary section 8).
The edge lengths are distributed geometrically with mean length,
�L=ΔLð1 + KG

2KB
Þ=ΔL 2KB +KG

2KB
. The number of all edges is NE =N1 +

N2 +N3 − 1 (where Ni is the number of vertices of degree i), with
N3 =N1 − 2 and N2 = NE + 3 − 2N1, and on average NE = S=�L. The ratio of
the number of retracting to free leaves is NR=NF =R =2KB +KG =2KB

�L.
By analyzing a recursive limit case, we found the final determining
formula S � N1ð2 lnð2N1Þ+2γ � 3Þ (γ is the Euler-Mascheroni con-
stant), which is in good agreement with simulations over the entire
tested parameter space (Fig. 2e, supplementary section 4.4). The
branching angle α (Fig. 1d) influences the embedding of the network in
space but not the number of each vertex type or edge length dis-
tribution; embedding in higher dimensions leads to additional
branching angles. Ultimately, the variables �L, R, N1, N2, N3, NF, NR, and
NE are fully determined by just the three parameters KG, KB, and S, with
�L and R even being independent of the network size S.

We note that the model can be fully non-dimensionalized using
both the relevant time and length scales, not just kr as above (supple-
mentary section 4.5). This leads to just two independent parameters,
i.e., the rescaled branching rate KB* : = kb

�L
krΔL

=
2kb + kg

2kr
, and the total

number of edges NE = S=�L. Hence in case only networks of a given
constant size S are considered, this even reduces to a single indepen-
dent parameter. (The branching angle α could be considered an

additional parameter, but again only plays a role when embedding the
network in space) All networks sharing these two parameters then
belong to the same ‘universal form’ and show equivalent rescaled
behavior (supplementary section 4.6). Since many real-world systems
likely havemore direct control over their specific rates than overNE and
KB* , we instead focus our remaining analysis on the earlier repre-
sentation that is based on network size S and the original rates (kb, kg,
kr) or rates non-dimensionalized by kr (KB≔ kb/kr, KG≔ kg/kr).

Importantly, we also found that these networks belong to a class
of systems that automatically self-organize to operate at a critical
point31. Size preservation and steady state require that the network
remain balanced between exponentially increasing and exponentially
decreasing the number of free leaves (kb = ks, supplementary sec-
tion 4), reminiscent of a critical Galton-Watson process32. In the case of
fast retraction, (kr≫ kb), the model exhibits features of self-organized
criticality (SOC)31 with branching and retraction corresponding to slow
driving and rapid relaxations (‘avalanches’), respectively (supplemen-
tary section 4.4.7). Utilizing the Riemann Zeta function, we found that
the probability P(LR) of a retraction event of length LR is scale-free,
following the power law PðLRÞ= cLaR, with c ≈0.74 and a ≈ −2.48 (sup-
plementary section 4.4.7). Additionally, the network exhibits an
approximately self-similar, fractal-like structure, which can be under-
stood through the critical recursive dynamics by which the network
travels and self-renews (supplementary section 4.4.8).

Network restructuring and traveling
Next, we analyzed how the network actually travels through space due
to its branching, growing, retracting, and eventually disappearing
leaves (supplementary section 5). One fundamental quantity for tra-
veling networks is their relocation time, τr, the time it takes for the
entire network to reorganize such that it occupies a new spatial posi-
tion and none of its initial edges exist anymore (Fig. 1a–c, e).
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Fig. 2 | Network structure and movement are determined by restructuring
rates. a A range of network structures are possible, illustrated by four typical net-
works at high/low KB/KG having different edge lengths, numbers of free leaves (cyan)
and retracting leaves (red), and leaf type ratios (simulation of model from Fig. 1d;
size, S= 70, supplementarymovie 3). b–d KB and KG regulate the structure, exhibited
by themean numbers of free leaves (b), retracting leaves (c), and the total leaves (d)
(simulated networks of S= 800; red lines: 2KB +KG ≤ 1 boundary of possible steady
state behavior). e Total leaves, N1, for various sizes, S, across the steady-state

parameter space of KB and KG shown in (b–d). Number of leaves depends primarily
on the average branch length �L as captured by the relation S=N1ð2 lnð2N1Þ+ 2γ � 3Þ,
where γ is the Euler-Mascheroni constant (black line). Inset:N1 does not collapse with
unscaled S. f The longer term network movement reveals a ‘tail’ and, in retrospect, a
unique ‘path’, and a ‘head’ (supplementary movie 4). g The network (center of mass)
moves superdiffusively over short time scales and diffusively over long time scales,
with the diffusivity, D, set by kb, kg, ΔL, and α. kb =0.2, kg=0.1, α= 60, S= 200 shown
here; red dashed line indicates analytical result.
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Interestingly, we find that the relocation time depends only on the
number of leaves and branching rate τr � N1

2kb
(supplementary sec-

tion 5.4). Another fundamental aspect is a description of the network’s
longer-term movement. In this acyclic model, for times larger than τr,
we find that a single unique path exists that connects the network’s
initial and final positions (gray dashed line in Fig. 2f, supplementary
movie 4). We define the ‘tail’ vertex as the oldest vertex in the network.
The tail follows this unique path on the network’s trailing end,
advancing at rate kr and intermittently pausing whenever it reaches a
degree-three vertex. We also define a ‘head’ (which can only be iden-
tified in retrospect) as the free leaf that moved along this path at the
leading edge of the network never switching or retracting. The head
advances with speed vh =ΔL(2kb + kg). To maintain a steady state
length between head and tail along the path, 2kb + kg = f ⋅ kr must hold,
where f ≤ 1 is the fraction of time the tail is retracting rather than
paused. In the framework nondimensionalized by kr, this implies
2KB +KG ≤ 1, which constrains allowable values of KB and KG for steady
state dynamics (red lines in Fig. 2b–d). Hence this type of network
behaves like a chain of vertices moving along a random path while
extending and retracting temporary side branches.

Focusing on the head dynamics, we identified a correlated ran-
dom walk, which, over longer time scales, also corresponds to the
motionof the network’s center ofmass. This randomwalk has step size
�L, step rate 2kb, and turning angle α/2. The diffusivity of the head and
correspondingly the entire network can be written entirely in terms of

the fundamental parameters as D=
ΔL2ð2kb + kg Þ2ð1 + cosðα=2ÞÞ

8kbð1�cosðα=2ÞÞ (Fig. 2g),

which corresponds to the freely rotating chain model in polymer
physics33,34. Interestingly, D is independent of network size. Networks
with high kg and low kb diffuse fast (large D) but have structures with
few free leaves (Fig. 2b). Having a small number of free leavesmight be
considered a risky configuration since it limits options for future
directions of travel, and stochastic eliminationof all free leaves at once
could lead to catastrophic collapse of the entire network (methods,
supplementary section 8). Together, the expressions derived above
provide quantitative insights into the network’s structure and motion,
moreover, since the same rates simultaneously impact both structure
and motion, this analysis highlights how traveling networks face
inherent tradeoffs.

Passive spatial search
Such tradeoffs become particularly important for spatial search, a task
that many traveling networks perform in real or abstract spaces
(Fig. 1a–c, supplementary section 6.1).We therefore analyzed the efficacy
of random search for different target sizes by counting all unique boxes
of different sizes35 that a network occupied within a given time period
(Fig. 3a). We ran corresponding simulations on four networks with dif-
ferent combinations of high and low KB and KG (Fig. 3b). The low KB, high
KG network collected the most large boxes, which can be understood
through the expression for D, which indicates larger diffusivity for large
KG. Networks with higher KB collected the most small boxes since new
lengths of �L are added at rate NF ⋅2kb (before the network begins
crossing itself). The low KB, low KG network diffuses slowly and does not
add much length per time hence it is not an effective searcher at any
length scale. Data from all four networks actually collapse to a single
curve when rescaled, corresponding to the universal form discussed
earlier (Fig. 3b inset, supplementary sections 4.6 and 6.1). The absolute
value of the slope of these plots is the Hausdorff dimension of the net-
work history which increases toward 2 with long runtimes as self-
crossing becomes more frequent (supplementary section 6.1.4), con-
sistent with Brownian trails in two ormore dimensions35. Hence traveling
networks can tune their restructuring rates for optimal multiscale search
depending on the relevant time and length scales.

Network size and branching angle affect howmuch space the side
branches can explore, thus we analyzed how these parameters impact
search behavior. Using the above expressions and understanding of
the network’s structure and motion, we find that the path has a char-
acteristic persistence length, Lp = � �L= lnðcosðα=2ÞÞ, and the network
has a characteristic search width, w, (Fig. 3c) which itself has a more
complex dependence on �L, α, and S (supplementary section 6.1.1). For
w < < Lp the network behaves like a particle sweeping a corridor, and
forw > > Lp the network behaves like a jittering blob conducting a fine-
scale search of limited scope, reminiscent of tradeoffs in depth-first
and breadth-first search strategies36. This ‘search morphology’ is sen-
sitive toα as illustrated in Fig. 3d. Counting boxes of size �L= 1 over time
reveals that the optimal angle for search depends on the search
duration, with w ≈ Lp collecting more boxes over shorter times and
w < Lp collecting more boxes over longer times in these examples
(supplementary section 6.1.5).
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Active and biased spatial search
Beyond the random restructuring and motion considered so far, we
now consider traveling networks that respond to their environments
through biased restructuring (supplementary section 6.2). We exten-
ded the model by making the free leaves sense and respond to varia-
tions in the environment. Here the switching rate of every free leaf
increases or decreases depending on whether the environment,
represented by a scalar field, at that leaf’s position is smaller or larger,
respectively, compared to the field averaged across all free leaves. This
leads to a biased motion of the network up a field gradient (Fig. 4a,
supplementary movie 5, methods, supplementary section 8.4.1). To
capture environmental resource consumption as caused by natural
systems (Fig. 1a)21,22, we coupled the network position tomodifications
of the field itself, leading to the network’s biased motion through a
changing environment (Fig. 4b, supplementary movie 6).

Many other model alterations can capture various environ-
mental responses. For example, in an alternative model we modified
the rates based on only local information and allowed the network’s
size S (which was kept constant until now) to change in response to a
dynamic environment (supplementary movie 7, methods, supple-
mentary section 8.4.2). This is akin to a physarum network (Fig. 1a)
that moves in response to food in the environment, changes its
network size accordingly, and modifies the food distribution in the
environment by consumption21. A deeper and more systematic ana-
lysis of such networks is left for future work (supplementary
section 7.2).

Importantly, these traveling networks can function as highly
sensitive detectors as network size preservation self-organizes37 (or
‘self-tunes’38) them to operate at a critical point where small
environmentally-induced changes to their fundamental underlying
restructuring rates can cause enormous changes to their emergent
structure and motion through local exponential growth and decay
(supplementary section 6.2). Note that even when network size is not
preserved, such critical behavior and thereby sensitivity could be
implemented locally within subsets of the network.

Many real-world traveling networks (Fig. 1a–c) can split into
multiple smaller entities or merge into larger structures (Fig. 1a, c)21,39,
suggesting that trade-offs exist between network size and network
number for performing efficient search tasks. We tested this hypoth-
esis with simulations (Fig. 4c, d). We found that for responsive net-
works moving up a linear, noisy gradient, larger networks are able to
move faster and tolerate higher noise levels than smaller networks
(Fig. 4c). However, in a landscape with different numbers of ‘oppor-
tunities’, represented by local Gaussian maxima, multiple small

networks are able to capture more opportunities than a single large
network of the same total size (Fig. 4d, supplementarymovie 8). Hence
it can be more advantageous to allocate the resources into one large
network or into multiple smaller networks - depending on the specific
environment and search task.

Application to real-world systems
Connecting the traveling network concept and our analysis results back
to ourmotivating examples (Fig. 1a–c), we note that evidence for similar
connections between underlying parameters choices, network struc-
ture, and strategic movements exists in the literature (Fig. 5a–c). (1)
Takamatsu et al.10 experimentally observed that Physarum adopts dif-
ferent network structures depending on its environment. More highly
branched sheet-like networks formed under favorable nutrient-rich
conditions contrasting with longer, spindly networks that formed in
adverse chemical environments (Fig. 5a) (supplementary
movies 7 and 9). (2) The actin literature connects (de-) polymerization
and branching rates to cytoskelatal structure and movement, which
then affect the number of filopodia and higher-level (search) behaviors
of cells (Fig. 5b)24,40. There is also experimental evidence for SOC in actin
networks41 similar to ourmodel predictions (supplementary section 4.4).
(3) The business strategy literature identified a positive correlation
between shareholder returns and capital reallocation among a com-
pany’s business units (Fig. 5c)42,43, suggesting that active movement
through the space of market opportunities via dynamic changes
(termed ‘seeding’, ‘nurturing’ and ‘pruning’) is important for productiv-
ity. Additionally, there is also analysis of which factors make it advan-
tageous for companies to merge or split (compare to Fig. 4c, d)44,45. In
the context of a traveling network model, we identify how rates (kb, kg,
kr) should be changed in order to select the desired behavioral strategy
(Fig. 5a–c). Conclusions from the model analyzed here can be sum-
marized in a concise 2D parameter space (Fig. 5d) (supplementary sec-
tions 4.5.2 and 4.6) that reveals various trade-offs, such as between
coarse fast search vs. fine slow search or when switching between
‘exploration and exploitation’46 or when avoiding the risk of catastrophic
collapse by operating sufficiently far away from non-steady state con-
ditions at the expense of slower dynamics overall (red line, Fig. 5d).

Alternative models
So far, our analysis focused on onemodel with particular assumptions
(Fig. 1d), but many real-world traveling networks likely follow very
different restructuring rules. As a contrasting example, we analyzed a
similar model in which retracting leaves were also allowed to revert
back into being growing and branching leaves. Hence in this altered
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model only one leaf type exists, and leaves frequently alternate back
and forth between retraction and growth (Fig. 5e). We found that for
such an ‘uncommitted retraction’model the resulting networks do not
display the range of morphologies seen in Fig. 2a; instead these net-
works degenerate into a single chain of nearly unbranched degree-two
vertices (Fig. 5e inset, supplementary section 7.1, supplementary
movie 10). Furthermore, the diffusion rate significantly slows with
increasing network size S, unlike themuch faster and size-independent
diffusion of the original model (Figs. 2g and 5e). Hence the ‘stay
committed to retraction once started’ rule appears important here for
achieving structural complexity as well as for effective motion and
search, and, more broadly, rules as well as rates can have a profound
impact on traveling network performance.

Discussion
In summary, herewe introduced the concept of travelingnetworks.We
then proposed an accessible mathematical model for such systems,
and our analysis uncovered and quantitatively explains numerous
features: The network traverses through space with a diffusive motion
that is independent of network size and with a characteristic restruc-
turing time after which complete network self-renewal occurs.
Thereby, an approximately self-similar, fractal-like network structure
emerges, which allows for effective and distributed search across
multiple length scales. Such search can be highly sensitive and
responsive to environmental signals as the network self-organizes to a
critical point. We then showed analytically how many of these key
structural and dynamic properties emerge from the underlying
restructuring rules and restructuring rates. This set of highly complex
network dynamics and strategies canultimately be reduced to a simple
two-dimensional behavioral space, which provides a direct connection
between restructuring rates and network performance (Fig. 5d; sup-
plementary section 4.6).

Multiple of these results depend on the specific model (Fig. 5e).
Hence alternative rule choices and more complex environmental sce-
narios should be investigated in the future (supplementary sec-
tion 7.2), which promises a rich set of theoretical results and applied
insights into this class of systems. In particular, we believe that this
traveling network concept can aid the deeper understanding and
the optimization of various natural and artificial dynamic systems
beyond the examples discussed so far (Figs. 1a–c and 5a–c), such as

interbreeding populations traveling through the space of genotypes47,
swarmrobots restructuring their communication tree48, or researchers
and labs pursuing different strategies when traveling through ‘knowl-
edge space’ with presumed correlations for scientific impact46,49.

Methods
Numerical implementation of the model
We simulated the dynamics of the traveling networkmodel introduced
in the text with a stochastic algorithm implemented in MATLAB.
Details of this implementation can be found in the supplementary
material, and the code can be found on GitHub as described in “Code
Availability”.

Cultivation and analysis of Physarum
P. polycephalum was cultivated as in Hossian et al.21. Briefly, P.
polycephalum (Carolina Biological Supply) was maintained on oat
flakes and inoculated onto 2% non-nutrient agar (BD Bacto Agar).
An HP Scanjet G3110 flatbed scanner was used to record the
behavior, taking images every 10min. In supplementary movie 9,
food was deposited as droplets of oatmeal water with a custom
robotic setup and indicated by a digital overlay, as described in
Hossian et al.21.

Image analysis for displaying the ‘age’ of different parts of
the organism in supplementary movie 1 was performed by sub-
tracting the background from images, then extracting the pixels
representing the organism from these images using the ‘ilastik’ pixel
classifier50 trained on 19 labeled physarum images. Pixel age as in
supplementary movie 1 was defined as the number of frames that a
particular pixel had been occupied. The organism path was extracted
manually.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its Supplementary Information files.
Should any raw data files be needed in another format they are avail-
able from the corresponding author upon request.

lo
g(

K G
)

log(KB)

low risk
slow moving
more free leaves

coarse search 
fast diffusion
long edges 
few leaves
high risk

fine search
more leaves
short edges

not steady 
state

d e

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

time

10-3

10-2

10-1

100

101

102

103

104

105

106

M
SD

uncommitted retraction

S = 1600
S = 400
S = 100

committe
d retraction (original m

odel), a
ll S

persistence
protrusion speed

“branching” “elongation”

kg

kb

actin cytoskeleton

attractant
repellentkg

kb

capital reallocation

kb , kg , kr

10.2%8.9%7.8%

annual returns to 
shareholders

highmedlow

a
slime mold

cb

Fig. 5 | Real-world traveling networks can optimize for different behaviors
through dynamic changes to their restructuring rates. a Different Physarum
network morphologies are seen in adverse and favorable environments (right vs.
left)10. b Changes in actin cytoskeleton structure and resulting cell movement due
to network restructuring by branching and elongation40. c Positive association
between more capital reallocation (higher restructuring rates) and returns for
corporations, 1990–2005, based on three quantiles of n = 1616 companies42. (Ima-
ges in (a–c) adapted from the corresponding references. Up and down arrows
indicate how restructuring rates might be changed within a traveling network

model to achieve the behaviors; rate changes deduced qualitatively from the
literature10,40,42,43. d Summary of behavioral and ecologically relevant network
properties and their codependence on the underlying restructuring rates in a
concise 2D parameter space (example network morphologies superimposed,
overall conclusions independent of S; colors of vertices as in Fig. 1d, time
nondimensionalized by kr). e A traveling network model without persistent
retraction ('uncommitted retraction' model) explores the space more slowly
than the original model (Fig. 1d), and becomes even less efficient with increasing
network size.

Article https://doi.org/10.1038/s41467-024-54342-7

Nature Communications |         (2025) 16:1922 6

www.nature.com/naturecommunications


Code availability
A MATLAB script that simulates the base traveling network model is
available at: https://github.com/CiraLab/TravelingNetworks.
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