
EN
G

IN
EE

RI
N

G

Interactive programming paradigm for real-time
experimentation with remote living matter
Peter Washingtona, Karina G. Samuel-Gamaa, Shirish Goyala, Ashwin Ramaswamia, and Ingmar H. Riedel-Krusea,1

aDepartment of Bioengineering, Stanford University, Stanford, CA 94305

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved January 15, 2019 (received for review September 6, 2018)

Recent advancements in life-science instrumentation and automa-
tion enable entirely new modes of human interaction with micro-
biological processes and corresponding applications for science
and education through biology cloud laboratories. A critical bar-
rier for remote and on-site life-science experimentation (for both
experts and nonexperts alike) is the absence of suitable abstrac-
tions and interfaces for programming living matter. To this end
we conceptualize a programming paradigm that provides stim-
ulus and sensor control functions for real-time manipulation
of physical biological matter. Additionally, a simulation mode
facilitates higher user throughput, program debugging, and bio-
physical modeling. To evaluate this paradigm, we implemented
a JavaScript-based web toolkit, “Bioty,” that supports real-time
interaction with swarms of phototactic Euglena cells hosted on a
cloud laboratory. Studies with remote and on-site users demon-
strate that individuals with little to no biology knowledge and
intermediate programming knowledge were able to success-
fully create and use scientific applications and games. This work
informs the design of programming environments for controlling
living matter in general, for living material microfabrication and
swarm robotics applications, and for lowering the access barriers
to the life sciences for professional and citizen scientists, learners,
and the lay public.

human–computer interaction | cloud laboratory | augmented reality |
swarm programming | interactive biotechnology

L ife-science research is increasingly accelerated through the
advancement of automated, programmable instruments (1).

Nevertheless, many usage barriers to such instruments exist,
primarily due to physical access restrictions, advanced training
needs, and limitations in programmability. Equivalent barriers
for computing (2–4) have been solved through application pro-
gramming interfaces (APIs) (5), domain-specific applications,
and cloud computing (6–9). Consequently, cloud laboratories to
remotely experiment with biological specimens have been devel-
oped and deployed for academia and industry (10), with appli-
cations including citizen science games (11, 12) and online edu-
cation (13–16). Different approaches have been taken to make
automated wet laboratory instruments programmable: Roboliq
(17) uses artificial intelligence (AI) to ease the development of
complex protocols to instruct liquid-handling robots; BioBlocks
(18) and Wet Lab Accelerator (10) are web-based visual pro-
gramming environments for specifying instrument protocols on
cloud laboratories like Transcriptic (10).

Beyond programming automated laboratory experiments, we
propose that there is an emerging need for a more general pro-
gramming paradigm that allows users to develop applications
that enable real-time interaction with the living matter itself. In
analogy to conventional computers, this can be seen as the dif-
ference between numerical calculations by mathematicians vs.
truly interactive applications like word processing (19), interac-
tive graphical programs (20), and computer games (21) used by
all strata of society. In other words, first-hand interactive experi-
ence with microbiology should become accessible for everyone.
Such concepts of “human–biology interaction” (HBI) have been
explored previously through interactive museum installations
(22) and educational games (23), but both the software and the

hardware always had to be developed from the ground up. Swarm
programming abstractions for easier development of interac-
tive applications have also been proposed (24). Other poten-
tial future applications include living material microfabrication
through light stimulation, self-assembly, and swarm robotics, e.g.,
with engineered bacteria or molecular motors (25–31).

Specifically, we conceptualize and implement an integrated
development environment (IDE) (32) and API for the creation
of both interactive and automated applications with living matter
hosted on a cloud laboratory (Fig. 1) (14). This paradigm enables
real-time interactive applications and spatial separation of life-
science instruments, programmers, and end users. As a specific
implementation, we develop the JavaScript-based web toolkit
Bioty that uses the phototactic behavior of Euglena cells (14).
We conduct on-site and remote user studies with domain experts
and novices to test the usability of the system and of applications
developed.

Results: System
Overview. We determined through iterative design, develop-
ment, and user testing that a system for remotely programming
living matter should ideally have the following minimal set of
components (Fig. 2): (i) end user and programming environ-
ments supporting online and event-driven application conven-
tions (Fig. 2 A, B, and H); (ii) a set of programming functions
for manipulating and sensing biological matter and integrating
with standard programming logic (Fig. 2C); (iii) biotic processing

Significance

Biology cloud laboratories are an emerging approach to lower-
ing access barriers for life-science experimentation. However,
suitable programming approaches and interfaces are lacking
for both domain experts and lay users, especially ones that
enable interaction with the living matter itself and not just
the control of equipment. Here we present a programming
paradigm for real-time interactive applications with remotely
housed biological systems which is accessible and useful for sci-
entists, programmers, and lay people. Our user studies show
that scientists and nonscientists are able to rapidly develop a
variety of applications, such as interactive biophysics experi-
ments and games. This paradigm has the potential to make
first-hand experiences with biology accessible to all of society
and to accelerate the rate of scientific discovery.

Author contributions: P.W. and I.H.R.-K. designed research; P.W., K.G.S.-G., S.G., A.R.,
and I.H.R.-K. performed research; P.W., K.G.S.-G., S.G., and A.R. contributed new
reagents/analytic tools; P.W. analyzed data; and P.W. and I.H.R.-K. wrote the paper.y

The authors declare no conflict of interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y

Data deposition: The link to all code used to implement the cloud laboratory is publicly
available on GitHub (https://github.com/hirklab/euglenalab).y
1 To whom correspondence should be addressed. Email: ingmar@stanford.edu.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1815367116/-/DCSupplemental.y

www.pnas.org/cgi/doi/10.1073/pnas.1815367116 PNAS Latest Articles | 1 of 9

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/hirklab/euglenalab
mailto:ingmar@stanford.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1815367116
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1815367116&domain=pdf&date_stamp=2019-03-01

Programmer

End-User

Bioty

Biology
(Cloud)

Lab

Stimulus
Control

Biology
Sensors

Final
Program

Application
Programming
Interface (API)

IDE

API

Fig. 1. We conceptualize a web programming paradigm that enables the
creation of automated, real-time interactive applications with living mat-
ter for expert and nonexpert programmers and end users. An integrated
development environment (IDE) enables programmers to rapidly develop
versatile applications. The resulting applications can then be run by end
users (e.g., experimenters). The underlying application programming inter-
face (API) includes stimulus commands that are sent to a biology cloud
laboratory affecting the living matter, e.g., shining light on phototactic
Euglena gracilis cells. The API also contains biology sensor commands to
detect properties of the living matter, e.g., tracking cellular movements. We
termed the specific implementation of this paradigm “Bioty.” The program-
mer, end user, and cloud laboratory can be spatially separated across the
globe (depicted positions are of illustrative nature).

units (BPUs) to digitally interface with the biological speci-
men and where a cluster of such BPUs is hosted on the cloud
(Fig. 2E); (iv) virtual BPUs that simulate all real BPU func-
tionalities, allowing the users to switch between virtual and real
BPUs (Fig. 2 D and F); and (v) real-time conversion of BPU raw
output into high-level accessible data structures (Fig. 2G). We
developed Bioty as a specific implementation that integrates all
of these components. Humans working with this system fall into
the two categories of end users and programmers, i.e., the latter
developing applications in Bioty that the former then use.

BPUs. In analogy to electronic microprocessors like GPUs (33),
BPUs (14, 15, 34) are devices that house, actuate, and measure

microbiological systems. Computing is defined by the Associa-
tion of Computing Machinery (ACM) as a series of “processes
that describe and transform information” (35). A BPU per-
forms biological computation by transforming a digital input
into a physical stimulus affecting analog biological behavior,
which is then converted back into digital output. A BPU can be
programmed like a conventional microprocessor, with a domain-
specific instruction set where the “computational algorithms” are
realized through the nondeterministic biological behavior and
responses of living matter (24).

Here, we use a previously described BPU architecture (14)
(Fig. 2E): Photophobic E. gracilis cells (36, 37) are housed in a
quasi-2D microfluidic chip, and the modifiable light intensity of
four LEDs placed in each cardinal direction can stimulate cells to
swim away from light, which is recorded by a microscope camera
(Fig. 2E). More complex responses are also possible (24).

Biology Cloud Laboratory. A cloud laboratory has the advantage
of making biology experiments accessible from anywhere. How-
ever, the presented programming paradigm is equally suitable for
a local implementation.

We developed Bioty over the existing cloud laboratory archi-
tecture, described previously in ref. 14, which provides real-time
interactive access to a cluster of BPUs (Fig. 2E), e.g., through a
virtual joystick.

Biological Data Structures. The raw data stream from a BPU
should be preprocessed in real time into higher-level data types
that enable direct access to state variables about the biological
material. Such abstractions allow programmers to treat biologi-
cal objects (e.g., cells) like sprites (38) or objects in a database,
whose state (e.g., position or gene expression level) can be
queried and manipulated in real time (24).

In Bioty, we implemented a continuous image-processing
layer where cells are continuously tracked (Fig. 2G). Informa-
tion about individual cells, such as position and orientation, is
extracted and associated with a cell index. The resulting data
structures can be queried directly.

Programming Abstractions. There are three fundamental cate-
gories of functions for programming living matter: stimulus
control (actuation), organism sensing, and application creation

EDCB

F

GH
A

Fig. 2. System architecture of Bioty, which transforms a biology cloud laboratory (14) into a platform for programming living matter. (Bioty-specific fea-
tures that have been implemented here compared to ref. 14 are highlighted with a red box.) (A) The users of Bioty fall into two categories, end users and
programmers, where the latter develop applications for the former. (B) End users have a multitude of input modalities for interacting with the remote
interactive microscopes, including a virtual joystick and the user’s keyboard. The run loop allows timed events to be programmed as well. (C) The program-
mers can develop applications using Bioty’s API functions for stimulus control, biology sensing, and application control. (D) The developed programs can be
run either on the live experimentation platform (BPU) or on the simulation thereof (virtual BPU, i.e., CPU/GPU). (E) When running on the experimentation
platform, the users can control biological stimuli in real time, i.e., using light emitted from an LED, which affects the swimming direction and other behaviors
of living Euglena cells inside the BPU. (F) Alternatively, the users can execute their programs on a simulation that models Euglena behavior. (G) The real-time
image processing system can operate on either the live video stream from the real BPU or the image stream from the simulation (i.e., virtual BPU). (H) The
final output consisting of a processed live video stream and overlaid virtual objects is displayed to the users.

2 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1815367116 Washington et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1815367116

EN
G

IN
EE

RI
N

G

C

D F

E

A
B

Fig. 3. The Bioty user interface enables users to program applications and
to observe the program’s effect on living cells. (A) The tool bar at the top
allows users to start/stop the program and save/load their code. Users can
also hide/show their code to preview the final prototype without seeing the
underlying code. (B) User programming area. Each text box corresponds to
a particular event: the program starting, the program ending, a millisecond
passing, a user keypress, or the movement of the joystick control by the
user. Code boxes can be expanded and collapsed. (C) Live microscope video
feed, with virtual objects overlaid on the frames. This is the primary end-user
program created by the user. (D) The joystick provides another method of
user input beyond keypresses, for example by mapping the joystick’s angle
to LED direction and the joystick’s drag length to LED intensity. (E) Users can
write helper functions which can be used across programming areas and
user programs. (F) API calls are displayed on the interface. The functions are
organized by type and can be expanded and collapsed. (This is a schematic
of the actual user interface, placed here for legibility; SI Appendix, Fig. S3
shows a screenshot of the Bioty user interface.)

(Fig. 2C). The actuating (“writing”) functions affect the state
of biological matter via a physical stimulus inside the BPU.
The sensor functions “read” the state of the biological matter.
The application creation functions consist of all other standard
programming functionalities.

We implemented Bioty in JavaScript with the needed fun-
ctions in each category. Stimulus control functions like “setLED”
allow manipulation of light intensity and evoke Euglena
responses like negative phototaxis. Biology sensor functions like

“getEuglenaPosition” provide information regarding the posi-
tion of a tracked Euglena cell with a given ID; functions for
velocity, orientation, and regional cell count assessment were
also implemented. Application creation functions are Bioty spe-
cific, e.g., drawing virtual shapes on the live video feed. Functions
can be combined into new, more advanced functions. The full set
of Bioty functions is detailed in SI Appendix, Fig. S4. Users can
also use the standard built-in JavaScript libraries.

Interface Design. An accessible user interface and programming
environment is required to reflect the standards of online (39,
40) and event-driven (41, 42) development environments. Inter-
active applications can then be developed and executed by any
programmer and end user.

The client side of Bioty (Figs. 2 B and H and 3 and Movie S1)
has a programming interface (Fig. 3B) and program output that
includes the live BPU camera feed with virtual overlays gener-
ated by the program (Fig. 3C). The programming interface has
distinct areas (Fig. 3B) for five separate event-driven functions:
(i) “startProgram” runs at the beginning of program execution,
(ii) “endProgram” runs after program termination, (iii) “run” con-
tinuously operates during program execution at a rate of 1 kHz,
(iv) “onKeypress” runs when the user presses a key, and (v) the
“onJoystickChange” function runs when the user operates the vir-
tual joystick (Fig. 3D). The joystick angle and magnitude map to
LED intensity inside the BPU. Standard features supporting pro-
grammers and end users are in place (Fig. 3A): “Run” and “Stop”
buttons trigger the “startProgram” and “endProgram” events, and
“Save Code” and “Load Code” buttons enable file handling. A
user can also run the same program on different BPUs.

Simulation Mode—Virtual BPU. A virtual BPU should be inte-
grated that can be programmatically accessed equivalently to a
real BPU, using the same programming commands. It should
be simple for a user to switch between the real and simulated
BPUs. Here, the actual “biological computation” will likely not
be the same for the real and virtual BPU, as the fidelity of the
underlying model is typically limited by incomplete knowledge
of the biological system and by computational power. The virtual
BPU is useful as it (i) allows fast and cheap testing and debug-
ging of programs, (ii) enables application development even if
there are more developers than available real BPUs, and (iii)
enables life-science research involving developing models of the

CBA

Fig. 4. Versatile biological applications can be created using 100 lines of code or fewer (study S1a). The code in A is completely depicted. The code presented
in B and C is simplified for illustration; the full code can be found in SI Appendix, sections S10 and S11, respectively. (A) Euglena can be tracked by their ID in
real time. The code obtains all of the organism IDs, iterates through them, and draws a rectangle around them. This code is further abstracted into a helper
function that can be reused across programs. (B) Real-time data visualization, such as the average velocity of the organisms over time, can be plotted. The
code extracts every organism’s velocity and uses the drawing functions to make a real-time plot of the average velocity. (C) The “guess the LED” game asks
the user to guess which LED is shining based on the movement direction of the Euglena swarm. The code makes use of four of the five supported event
handlers. The start handler initializes global variables and hides the joystick input; the end handler displays an end message to the player and unhides the
joystick; the run handler draws text on the screen and randomly selects one of the four LEDs to shine light from one direction; the “onKeyPress” handler
contains the logic for user key input for guessing which LED is on.

Washington et al. PNAS Latest Articles | 3 of 9

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1815367116/video-1
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental

Table 1. Mean completion times for the two preliminary tasks
and the free-form task during the on-site study (study S1b);
n = 7 participants

Task Average completion time ± SD, min

Modify first program 29.02 ± 14.19
Modify second program 38.15 ± 21.39
Program two new applications 50.32 ± 21.03

Details about the programming tasks are in SI Appendix, section S3).

biological system that can be tested side by side against the live
experiment.

We implemented the virtual BPU (Fig. 2F) with a simple
model where animated Euglena respond to simulated “setLED”
stimuli with negative phototaxis (Materials and Methods). We
integrated the virtual BPU on the client side, but it could
also be implemented on the server side, depending on com-
putational resource limitations on either end. The virtual BPU
feeds simulated images into the real-time image processing
module.

Results: Use Cases and User Studies
Overview. To evaluate Bioty from the perspective of the pro-
grammer and end user, we undertook the four studies in the
following order: (S1a) We programmed various example appli-
cations ourselves (Fig. 4), (S1b) we let HBI novices (who had
no prior experience with interactive biology but prior JavaScript
programming experience) develop applications (Table 1 and
Fig. 5A), (S1c) we let HBI experts (who had worked with
or developed interactive biology before) program applications
(Table 2 and Fig. 5 B and C), and (S2) we let end users interact
with an educational program we developed (Fig. 6).

S1a: Example Applications. We first illustrate the programming
potential and versatility of Bioty through three applications cre-
ated by the research team. These applications also provide use
cases of the stimulus control, biology sensor, and application

creation functions while requiring comparably few lines of code
(20, 71, and 30 lines, respectively).
Real-time tracking. This program tracks all live cells on screen
and draws a box around each with the tracking ID displayed next
to the box (Fig. 4A and Movie S2). This program provides direct
visualization of the underlying tracking algorithm.
Velocity plot. This program provides a visualization of the
instantaneous average Euglena velocity (Fig. 4B). This program
might be useful for real-time data visualization during biophysics
experimentation.
Guess the LED game. This program is a “biotic game” (43) where
the player has to guess which of the four LEDs is switched on
based on the observed direction of Euglena swarm movement
(Fig. 4C and Movie S3), scoring one point for every correct guess.
This game might be used to teach about phototactic behavior,
also highlighting the few seconds of delay between light stimulus
and cell reorientation.

S1b: HBI Novices as Programmers. To assess the accessibility of the
paradigm, we recruited participants without previous experience
developing interactive biology. Seven programmers aged 21–
24 y (mean = 22.6 y, SD = 1.1 y) participated in the study. The
only inclusion criterion was previous programming experience.
On a scale of 0 (“no experience”) to 5 (“expert”), the partici-
pants described their experience regarding programming (mean
= 3.6, SD = 0.8), JavaScript (mean = 2.6, SD = 1.5), and biology
(mean = 2.0, SD = 1.2). The primary purpose of this study was
to let these participants develop a variety of example applications
which we could then evaluate qualitatively.

All participants worked on site in our laboratory. To first famil-
iarize the participants with this programming paradigm, they
completed two structured tasks where they modified existing pro-
grams (see Table 1 for completion times as well as SI Appendix,
section S3: Further description of study S1b). They then per-
formed two free-form programming tasks to determine the types
of applications that novices may create (Table 1). All seven par-
ticipants completed all required structured programming tasks
(detailed in SI Appendix, section S3) and developed at least one

DCBA

Euglena In Box: 4

Score: 131

Euglena Needed To Score: 102
Top Bottom Left Right

Average rotation: 253.5 deg
0 30 60 90

Points:
29

Points:
30

Player 1: Roll ball up
Player 2: Turn on left LED

Fig. 5. Study participants (studies S1b and S1c) were enabled to create a variety of interactive biological applications (A–D, Top is screenshot and A–D,
Bottom is illustrative picture of program). (A) (novice user, study S1b) A video game where the player must get specific Euglena into a moving virtual green
box, controlled by the player, while the user-directed LEDs shine in the direction of the moving box, making the Euglena move away from the target goal.
(B) (expert user, study S1c) A continuously rotating line visualizing the average orientation of all organisms detected by the BPU. (C) (expert user, study
S1c) A two-player game where the first player shoots the red ball from a particular position with the aim of hitting as many Euglena as possible, while the
second player then tries to steer the Euglena with the arrow keys (mapped to LEDs) so that the ball avoids as many Euglena as possible. (D) (semiexpert
user) A histogram of Euglena rotations on the screen, grouped into bucket sizes of 10◦. This program allows the user to change the intensity of the four
LEDs by dragging four sliders on the screen. This program was created by an undergraduate who did not participate in any study and who later joined the
research team. Mouse click event listeners were not explicitly supported by the current version of Bioty but were added through native JavaScript mouse
event handlers on the HTML5 canvas.

4 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1815367116 Washington et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1815367116/video-2
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1815367116/video-3
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1815367116

EN
G

IN
EE

RI
N

G

Table 2. Coding time and length of the free-form applications expert participants built (study
S1c)

Participant Time, min Lines of code Organism API calls Sensor API calls Application API calls

1 120 41 2 2 8
2 269* 121 14 12 2

104 16 2 4
3 137 57 8 5 11
4 351 110 10 5 19
5 77 68 5 0 5

Also included is the number of API calls made in each application, split up by function type. Application
details for each program are detailed in SI Appendix, section S9.
*Participant 2 created two applications; the reported time is the combined time to create both programs.

free-form application, although some programs had some bugs
due to the 2-h time constraint. Task completion times appear in
Table 1; no single programming task took more than 1.5 h to
complete.

To simulate BPU timing constraints with an increased number
of users, we implemented a fixed session time, after which the
participants were locked out of the BPU and had to log back in,
either to the same BPU or to a new one. The first two participants
commented on the inconvenience of this time pressure (example
quote: “I have to admit, having the timer count down while I’m
writing my code is pretty stressful”). This suggested to us that it
would be beneficial to address these physical resource limitations
with a virtual development and execution mode. We then imple-
mented a virtual BPU that simulates the main aspects of the
real BPU; from both an end-user and a programmer perspective,
the virtual and real BPUs are handled equivalently (Simulation
Mode—Virtual BPU and Fig. 2F). All of the following study par-
ticipants had access to this virtual BPU, including in subsequent
studies.

Two notable programs developed by the participants demon-
strate biotic games (23) and applications for data collection.
Moving box game. One participant (programming = 4,
JavaScript = 3, biology = 1) created a game (Fig. 5A; Movie
S4) where the player must “capture” one Euglena that is spec-
ified by its ID into a virtual green box that is controlled by the
user. The Euglena are stimulated to move away from the box via
the joystick-controlled LEDs, which shine in the direction of the
moving box’s trajectory, making the Euglena move away from the
target goal.
Swarm movement statistics. Another participant (programm-
ing = 4, JavaScript = 4, biology = 2) kept a running average
of Euglena velocity, acceleration, and rotation over time while
randomly varying the direction and intensity of light. The user
was able to visualize these aggregate movement statistics on the
screen while observing the moving Euglena and seeing the effects
of the shining LED.

Overall we found that these HBI novices were able to suc-
cessfully develop versatile applications. In the poststudy ques-
tionnaire, seven of seven participants mentioned the ease of
use (example quote: “The API was very straightforward and
simple to use. It does not take much time to ramp up on the
API, which made it fun and way faster to move toward actu-
ally using the program”). Optional feedback also indicated that
programmers learned new biology during the development pro-
cess (example quote: “I realized their individual behaviors are
really variable; some of them barely respond to light, and some of
them respond really quickly”). This suggests that programming
with living matter can facilitate experimentation and education
online.

S1c: HBI Experts as Programmers. To benchmark the affordances
of this development methodology to previously established
approaches for creating interactive biology applications (such as

refs. 13, 22, 23, and 44), we recruited participants who had devel-
oped such applications in the past. Five HBI experts aged 26–
33 y (mean = 31.2 y, SD = 3.0 y) were recruited for this study.
On a scale of 0 (no experience) to 5 (expert), the participants had
a range of backgrounds in programming (3–5, mean = 3.6, SD =
0.9), JavaScript (0–4, mean = 2.4, SD = 1.5), and biology (3–5,
mean = 3.4, SD = 0.9).

All participants worked remotely and successfully developed
applications of their own choosing, spending between 77 min and
351 min (mean 190.74; median 137 min), using between 42 and 123
lines of code, and using all types (organism, sensor, and applica-
tion) of available API calls (Fig. 2C) with different frequencies
(Table 2 and SI Appendix, section S9). Participants used both
the live BPU and the simulation mode, spending the majority of
time (77.6%, SD = 11.4%) in the former. Two notable programs
developed by the HBI experts demonstrate how they applied the
paradigm to real-time data visualization and game design (23).
Orientation visualization. To provide a way of determining the
overall response of the organisms to light stimuli, one of the pro-
grammers (programming = 3, JavaScript = 4, biology = 3) cre-
ated a visualization with a line that rotates in the direction of the

Fig. 6. End users during study S2 tested applications that enabled the
interactive interrogation of Euglena responses augmented by real-time
data visualization. Applications progressed in five stages of complexity. The
image shows the final program (for the full progression applications, see SI
Appendix, Fig. S1). These applications were developed by the research team
and were implemented as iterations of the program in Fig. 5D. Remote
study participants were evaluated based on how they could interact with
the developed applications. The guided experimentation platform displays
a real-time radial plot of the average orientation of all cells as well as a time
series plot of average orientation. Users can change the sliders to adjust the
intensity of the LED lights.

Washington et al. PNAS Latest Articles | 5 of 9

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1815367116/video-4
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1815367116/video-4
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental

average orientation of all detected Euglena (Fig. 5B and SI
Appendix, section S9). The program also records the average
orientation every 10 s and saves the results to a file.
Basketball game. Another programmer (programming = 3,
JavaScript = 3, biology = 5) created a two-player game (Fig. 5C
and SI Appendix, section S9) where the first player lines up a vir-
tual ball using the “A” and “D” keys and shoots it with the space
key, aiming to hit as many Euglena as possible and scoring a point
for every cell that is hit. The second player then uses the W, A,
S, and D keys to control LEDs to try to steer the Euglena away
from the ball in an attempt to minimize the number of points the
first player scores.

When asked whether developing their application with Bioty
was easier or harder than it would have been using previously
existing HBI approaches and tools, all five participants stated
that Bioty was much easier. This is also indicated by the rela-
tively low development time and few lines of code (Table 2 and
SI Appendix, section S12).

S2: HBI Novices as End Users. To test whether programs written
in Bioty are ultimately usable for end users, we developed a set
of educational applications centered around self-guided science
experiments (Fig. 6). These applications were developed by the
research team as an iteration of a program created by a semiex-
pert user (Fig. 5D), who was not a member of any study but
used Bioty in a hackathon at Stanford University. These appli-
cations present moving sliders to control the LED stimulus and
real-time visualizations of the average orientation of all organ-
isms depicted through the circular variance (Fig. 3). The main
learning goals were as follows: Euglena respond to light, Euglena
orient with the direction of the light, Euglena response depends
on light intensity, and it takes a few seconds until the Euglena
have fully responded and reoriented with the light. These appli-
cations build up in complexity over five phases (SI Appendix, Fig.
S1). Fig. 6 and Movies S6 and S7 show the final application in the
sequence.

Seventeen remote HBI novices aged 22–55 y (mean = 26.0 y,
SD = 8.2 y) were recruited to participate in the guided exper-
imentation platform. Eleven of the participants identified as
female and six as male. The participants were asked for their
prior familiarity with Euglena on a scale from 1 to 5, where 1
corresponds to having never heard of Euglena, 3 corresponds to
having read about Euglena before, and 5 corresponds to working
with Euglena regularly. The participants’ responses ranged from
1 to 4 (mean = 1.8, SD = 0.4). Among these participants were
also three regular Eterna (11) players (>30 h of play per month
over the past 1.5 y), who were recruited to gather preliminary
insight about Bioty’s potential as a citizen science platform.

After the first activity, 9/17 participants reported movement
toward or away from light. The others reported spinning around
their axis. After the last activity, 14/17 participants reported that
Euglena move away from light. Eleven of 17 participants reported
that the intensity of light affects the speed at which the Euglena
move away from light. Fourteen of 17 participants reported
a response time, ranging from 2 s to 1 min (mean = 31.8 s,
SD = 8.7 s). The concept of circular variance was harder to
grasp for the participants: Only 9/17 correctly stated that “alpha”
meant the average orientation of the cells. Overall, participants
stated that they learned certain concepts from the applica-
tions, such as the fact that Euglena have a negative response to
light. This demonstrates that applications written in Bioty could
support science education.

In the poststudy questionnaire, participants were asked free-
form questions about their experience. Regarding the difference
between using live and simulated experiments, 11/17 found the
simulation to be more predictable and reliable. Nevertheless,
13/17 preferred the live mode over simulation, 1/17 preferred
the simulations, and the others did not have a preference. Par-

ticipants also pointed out that while the live mode interacts with
real organisms, the simulation is easier to use. When asked about
the advantages of a live experimentation platform, two of the
Eterna players responded that it is “more factual” and “What
you see is what you get.” Hence the feedback combined from
all participants is consistent with previous findings [e.g., from
the educational literature (45–47)] that both experiments and
simulations synergistically motivate scientific inquiry, and the
presented IDE supports both.

Discussion
We demonstrated a programming API and IDE to perform real-
time interactive experiments with living matter, both locally and
on a cloud laboratory and for experts and novices alike. Bioty
allows for the specification of interactive experimentation, the
program execution to adjust to the biological response via real-
time feedback, the integration of a simulation mode, and the
creation of interactive programs for remote end users. The API
allows for organism sensing via real-time object tracking, organ-
ism control through user-controlled highly precise light stimuli
enabled through communication with a remote web server host-
ing BPUs, and application development through a user-friendly
drawing and program control library.

The usability and ease of application development using this
paradigm were successfully evaluated through multiple user
studies. Participants from a variety of backgrounds, both HBI
novices and experts, mastered the familiarization tasks and
developed applications of their choosing. The applications devel-
oped in study S1a demonstrated the feasibility of versatile use
cases, e.g., data visualization, automated scientific experiments,
interactive scientific experiments, art, and games (Fig. 5). Fur-
thermore, the applications were created rapidly (less than 6 h,
with less than 150 lines of code; Table 2). The novice HBI users
in study S1a indicated that programming had a low barrier to
entry, and the HBI experts in study S1b confirmed easier and
faster development than previous approaches (14, 15, 22, 24, 48)
(SI Appendix, section S5). Study S1c demonstrated that end-user
applications (e.g., for science education) can be implemented
that leverage the real-time interactivity with the biological sub-
strate. Hence, the Bioty paradigm follows Seymour Papert’s
vision of interfaces with “low-floor/high-ceiling/wide-walls” (49,
50) and constitutes a significant step toward making experi-
mentation, engineering, and interaction with living matter more
accessible to a broader community.

This programming paradigm for living matter and its imple-
mented architecture (Fig. 2) enables versatile future applications
in research, fabrication, and education. It generalizes beyond
the domain-specific Euglena biocomputing used here to other
biological, chemical, and physical systems with different con-
trol capabilities, e.g., chemically responsive bacteria or molecular
motors for swarm robotics and living material fabrication (24,
25, 29–31, 35, 51). Higher spatiotemporal manipulation through
more complex light fields and programming abstractions is pos-
sible, (e.g., “move cell i right by 5 µm”) (24). Citizen science
projects like Eterna (11) and Foldit (54) could be supported with
enhanced real-time laboratory capabilities. The parallel integra-
tion of simulation and live experiments (Fig. 2 E and F) not
only reduces load on the physical experimentation resources but
could also afford direct model validation, such as with a whole-
cell model as described in ref. 55. Formal and informal science,
technology, engineering, and mathematics (STEM) education
is in significant need of new approaches and technologies to
enable inquiry-based science learning (13, 14, 22, 34, 44, 56–60),
which could be supported as well. Augmented reality (61) could
deliver versatile and rich worlds as “µAR” in a cost-effective
and scalable manner given the small footprint of microbiology.
Advancement in high-throughput life-science technologies (62,
63) will increasingly facilitate such applications, considering that

6 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1815367116 Washington et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1815367116/video-6
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1815367116/video-7
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1815367116

EN
G

IN
EE

RI
N

G

Bioty is run on a cloud laboratory that could already support mil-
lions of 1-min long experiments per year at a cost of $0.01 each
(14). Just as personalized computers and programming APIs
revolutionized the accessibility and mass dissemination of inter-
active computing (64), we believe that programming toolkits like
Bioty could stimulate equivalent innovations for the life sciences.

Code Availability
The link to all code used to implement the cloud laboratory
is publicly available on GitHub at https://github.com/hirklab/
euglenalab (65). The code for Bioty is in the feature/
bioticGameProgramming branch.

Materials and Methods
Technical Implementation.
Cloud laboratory implementation. The Bioty system is developed over the
existing cloud laboratory architecture described in ref. 14. The original
implementation contained a joystick which allowed users to control remote
LEDs on a BPU. A standard web socket connection is used to send the user
joystick commands from the web server and the remote BPU, allowing for
real-time interaction.

Each BPU consists of a Raspberry Pi which controls four LEDs. The LEDs are
placed over a microfluidic chamber that houses the organisms. The Rasp-
berry Pi is also connected to a Raspberry Pi camera that is placed over
a microscope lens facing the microfluidic chamber. The frames from the
camera are sent back to the web server and displayed to the user in real
time.
Real-time image processing. The client continuously manipulates the
frames returned from the microscope’s live feed using the Chrome browser’s
Portable Native Client (PNaCl) toolchain. PNaCl executes native C++ code
directly in the browser, performing multiple object tracking via the Kalman
filtering algorithm for motion prediction (66) in conjunction with the Hun-
garian algorithm (67) to continuously match detected object contours. The
application control functions render over the HTML5 canvas displaying the
live video feed.
Application development support. The programming interface follows an
event-driven real-time programming mechanism. When any of the five
event programming blocks (“start,” “end,” “run,” “onJoystickChange,” or
“onKeyPress”) are triggered through one of the end-user events, the code
is filtered through a parser that removes any nonapproved function calls.
The set of approved function calls is the set of API calls plus the standard
JavaScript built-in functions. The program throws a compile-time error if a
nonapproved function is called via the Caja compiler. For each API function
that the parser evaluates, the corresponding backend code is injected into
the user code, replacing the user call to the API function. If the input code
block passes the prechecks, then the modified code is evaluated as normal
JavaScript code, with all built-in language constructs such as looping and
program control. If the evaluation of the code throws a runtime error, the
execution of the entire script terminates and the error message is displayed
to the user.

Some API calls communicate directly with the microscopes, while others
perform image processing on the video frames that are returned from the
cloud laboratories. This distinction in function implementation is not seen
by the user.

When code is saved by a user, the JavaScript code is saved in a format-
ted file on the system that contains the user code. When a user loads a
previously saved program, the formatted file is parsed and placed into the
corresponding code blocks on the Bioty user interface.
Simulation mode. The following equations are used as a toy model for the
motion of the Euglena simulation, where x(t) and y(t) are the positions of
a Euglena, v is the velocity of a Euglena (which is assumed constant but can
vary between individual Euglena), θ(t) is the angle of a Euglena in the 2D
plane, and φ(t) is the angle of the LED light stimulus, all at time t; δt is the
frame rate, and η is random noise:

x(t + δt) = x(t) + v cos(θ(t))δt
y(t + δt) = y(t) + v sin(θ(t))δt
θ(t + δt) = θ(t) + [ε sin (θ(t)−φ(t))+ η]δt.
Each Euglena is given a random initial position on the screen, a random

initial orientation angle, and a constant velocity v sampled from a uniform
distribution between 0 and 10 pixels per frame. To calibrate this range of
velocities, videos of Euglena were analyzed to determine how many pixels
on the HTML5 canvas the Euglena tended to move through per frame. The
frame rate is set to 1 frame per 10 ms. ε is the coupling strength, set to −0.3.
Each simulated cell is an ellipsoid with a 5:1 major-to-minor axis ratio.

We used periodic boundary conditions: When a Euglena’s x position
moves past the left or right edge of the screen, it retains its y position,
velocity, and orientation, appearing on the other side of the screen. The
same method is used when its y position moves past the top or bottom
edge of the screen. If a Euglena collides with another, as defined by their x
and y positions being within 2 pixels of each other, then both Euglena are
assigned a new random θ.

This is a simple model capturing the basic idea of Euglena dynamics in
response to light. More sophisticated parameter matching between real and
simulated Euglena behavior is possible. For example, the Euglena model
is not currently dependent on light intensity. Furthermore, more complex
models capturing the subtleties of Euglena movement, such as it 3D polygo-
nal motion, helical swimming pattern, and spinning at high light intensities,
are possible, but beyond the scope of this work.

User Studies. All user studies were conducted according to Stanford
University IRB-18344. Informed consent was obtained from all participants.
Study S1b—HBI novices as programmers. To evaluate the remote program-
ming of organisms, we started with an on-site study with programmers
performing two structured and two free-form programming tasks. Par-
ticipants were recruited through online mailing lists and self-described
programming ability.

Participants were limited to 2 h of total coding time, including familiar-
izing themselves with the interface and API. The version of Bioty used in
this study did not include a virtual simulation mode for the first two partici-
pants, but it was provided to the remainder of the participants (including in
subsequent studies) in response to feedback about physical resource limita-
tions. Participants worked on site (instead of remotely), as it allowed us to
directly observe their actions and interview them.

Seven programmers aged 21–24 y (mean = 22.57 y, SD = 1.13 y) partic-
ipated in the on-site study. Three of the participants identified as female
and four identified as male. Participants were required to be fluent in
English and came from a variety of academic backgrounds. Three par-
ticipants were undergraduate students at Stanford University, three were
full-time software developers, and one was a clinical researcher with some
coding experience.

In the recruiting form, participants were asked to describe their general
programming experience, their JavaScript programming experience, and
their general biology experience on a scale from 0 (no experience) to 5
(expert). The participants’ stated programming experience ranged from 2
to 4 (mean = 3.57, SD = 0.84), JavaScript experience ranged from 0 to 4
(mean = 2.57, SD = 1.51), and biology experience ranged from 1 to 4 (mean =
2.0, SD = 1.17). One participant (biology = 3) had prior experience work-
ing with Euglena. Five of the seven participants had little to no biology
knowledge (rating of 1 or 2).

Before starting the familiarization tasks (SI Appendix, section S3), par-
ticipants were shown a working demonstration of the applications that
they were asked to modify. The study researchers were available to answer
questions about the API and web interface logistics, but answers to the
programming tasks were not provided. After the completion of the first
set of structured tasks, participants were asked to complete two free-form
programming tasks. Data were recorded on an online Google Form. See SI
Appendix, section S3 for more details about the study, including the full set
of questions participants were asked.
Study S1c—HBI experts as programmers. To gather information about sys-
tem use by domain experts, we recruited participants with prior Euglena HBI
development backgrounds to program applications on the platform over an
extended period. We aimed to compare their prior experiences with their
experience with the remote paradigm.

Five HBI experts (i.e., people who have previously developed Euglena-
based HBI applications) aged 26–33 y (mean = 31.2 y, SD = 3.0 y) were
recruited for the remote portion of the study. The participants were known
by the authors beforehand as established HBI experts. Two of the partici-
pants identified as female and three identified as male. Three participants
were graduate students at Stanford University, one was a full-time software
developer, and one was a postdoctoral scholar in biophysics. The partici-
pants’ stated programming experience ranged from 3 to 5 (mean = 3.6, SD =
0.9), JavaScript experience ranged from 0 to 4 (mean = 2.4, SD = 1.5), and
biology experience ranged from 3 to 5 (mean = 3.4, SD = 0.9).

The procedure for the study with HBI experts was identical to that
for the study with novices (study S1b), except for where noted here. The
participants were asked to perform two structured and two free-form pro-
gramming tasks. However, this time the participants were not limited to
2 h of total coding time, instead having 1 wk to complete their programs.
The HBI experts were also provided a simulation mode, in response to the

Washington et al. PNAS Latest Articles | 7 of 9

https://github.com/hirklab/euglenalab
https://github.com/hirklab/euglenalab
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental

feedback from study S1b. Logs of the total time actually spent on
the IDE were recorded. See SI Appendix, sections S3 and S4 for more
details about the study, including the full set of questions participants
were asked.
Study S2—HBI novices as end users. To test whether programs written
using this paradigm are ultimately usable for end users, 17 remote HBI
novices aged 22–55 y (mean = 26.0 y, SD = 8.2 y) were recruited to partic-
ipate in the guided experimentation platform. Participants were recruited
through the Stanford University email lists and the Eterna news feed. The
remote participants were provided with instructions for interacting with the
guided experimentation platform. To verify the usability of the programs
developed in an independent online setting, no help with the interface was
provided by researchers at any point during the study. The simulation mode
was implemented for this study. Participants were asked to use both the
simulation and live modes.

The guided experimentation platform was broken up into six submod-
ules. The first five submodules corresponded to a developed application.
These submodules built off of each other to progressively teach the student
more about Euglena movement patterns through increasingly interactive

programs (see SI Appendix, Fig. SI1 for details). The final submodule asked
students to perform an experiment to determine how long it takes Euglena
to respond to light, as defined by the time it takes for the average ori-
entation of the organisms to have a consistently low circular variance.
Note that the current implementation of Bioty (Figs. 2 and 3) does not
directly support mouse touch events, but the touch event functionality can
be implemented within Bioty indirectly by manipulating the HTML5 can-
vas using native JavaScript code, which was done here. Adding an explicit
touch event handler will be added as a feature in a future iteration of
Bioty.

To analyze the qualitative results, two raters categorized all quotes. A
first rater initially categorized the quotes, followed by a second rater who
confirmed the first rater’s categorizations. When there was disagreement,
the two raters discussed the categorization of quotes.

See SI Appendix, section S5 for more details about the study.

ACKNOWLEDGMENTS. The authors thank Z. Hossain, T. R. Stones, R. Das,
and members of the I.H.R.-K. laboratory for suggestions; all volunteers who
tested the system in various stages; and NSF Cyberlearning (1324753) for
funding.

1. Sia SK, Owens MP (2015) Share and share alike. Nat Biotechnol 33:1224–1228.
2. Wang L, et al. (2008) Scientific cloud computing: Early definition and experi-

ence. Tenth IEEE International Conference on High Performance Computing and
Communications, 2008. HPCC’08 (IEEE), pp 825–830.

3. Hoffa C, et al. (2008) On the use of cloud computing for scientific workflows. IEEE
Fourth International Conference on eScience, 2008. eScience’08 (IEEE), pp 640–645.

4. Keahey K, Figueiredo R, Fortes J, Freeman T, Tsugawa M (2008) Science clouds: Early
experiences in cloud computing for scientific applications. Cloud Computing and
Applications, 2008, pp 825–830.

5. Bloch J (2006) How to design a good API and why it matters. Companion to the 21st
ACM SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and
Applications (ACM), pp 506–507.

6. Corbató FJ, Merwin-Daggett M, Daley RC (1962) An experimental time-sharing sys-
tem. Proceedings of the May 1-3, 1962, Spring Joint Computer Conference (ACM), pp
335–344.

7. Murty J (2008) Programming Amazon Web Services: S3, EC2, SQS, FPS, and SimpleDB
(O’Reilly Media, Sebastopol, CA).

8. Zahariev A (2009) Google App Engine (Helsinki Univ of Technology), pp 1–5.
9. Wilder B (2012) Cloud Architecture Patterns: Using Microsoft Azure (O’Reilly Media,

Sebastopol, CA).
10. Check Hayden E (2014) The automated lab. Nature 516:131–132.
11. Lee J, et al. (2014) RNA design rules from a massive open laboratory. Proc Natl Acad

Sci USA 111:2122–2127.
12. Khatib F, et al. (2011) Algorithm discovery by protein folding game players. Proc Natl

Acad Sci USA 108:18949–18953.
13. Hossain Z, et al. (2017) Design guidelines and empirical case study for scaling authen-

tic inquiry-based science learning via open online courses and interactive biology
cloud labs. Int J Artif Intell Educ 28:478–507.

14. Hossain Z, et al. (2016) Interactive and scalable biology cloud experimentation for
scientific inquiry and education. Nat Biotechnol 34:1293–1298.

15. Hossain Z, et al. (2015) Interactive cloud experimentation for biology: An online edu-
cation case study. Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (ACM), pp 3681–3690.

16. Hossain Z, Riedel-Kruse IH (2018) Life-science experiments online: Technological
frameworks and educational use cases. Cyber-Physical Laboratories in Engineering
and Science Education (Springer, Cham, Switzerland), pp 271–304.

17. Whitehead E, Rudolf F, Kaltenbach H-M, Stelling J (2018) Automated planning
enables complex protocols on liquid-handling robots. ACS Synth Biol 7:922–932.

18. Gupta V, Irimia J, Pau I, Rodrı́guez-Patón A (2017) Bioblocks: Programming protocols
in biology made easier. ACS Synth Biol 6:1230–1232.

19. Zinsser WK (1983) Writing with a Word Processor (Harper & Row, New York).
20. O’rourke TC, et al. (1994) Graphical user interface. US Patent 5,349,658 (September

20, 1994).
21. Heidel R, Snider RE (1994) Touch screen video gaming machine. US Patent 5,342,047

(August 30, 1994).
22. Lee SA, et al. (2015) Trap it!: A playful human-biology interaction for a museum

installation. Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (ACM), pp 2593–2602.

23. Cira NJ, et al. (2015) A biotic game design project for integrated life science and
engineering education. PLoS Biol 13:e1002110.

24. Lam AT, et al. (2017) Device and programming abstractions for spatiotemporal
control of active micro-particle swarms. Lab Chip 17:1442–1451.

25. Jin X, Riedel-Kruse IH (2018) Biofilm lithography enables high-resolution cell pattern-
ing via optogenetic adhesin expression. Proc Natl Acad Sci USA 115:3698–3703.

26. Glass DS, Riedel-Kruse IH (2018) A synthetic bacterial cell-cell adhesion toolbox for
programming multicellular morphologies and patterns. Cell 174:649–658.

27. Frangipane G, et al. (2018) Dynamic density shaping of photokinetic E. coli. eLife
7:e36608.

28. McCarty NS, Ledesma-Amaro R (2018) Synthetic biology tools to engineer microbial
communities for biotechnology. Trends Biotechnol 37:181–197.

29. Tabor JJ, et al. (2009) A synthetic genetic edge detection program. Cell 137:1272–1281.

30. Yao L, et al. (2015) Biologic: Natto cells as nanoactuators for shape changing
interfaces. Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (ACM), pp 1–10.

31. Nakamura M, et al. (2014) Remote control of myosin and kinesin motors using light-
activated gearshifting. Nat Nanotechnol 9:693–697.

32. Rehman RU, Paul C (2003) The Linux Development Platform: Configuring, Using,
and Maintaining a Complete Programming Environment (Prentice Hall Professional,
Upper Saddle River, NJ).

33. Owens JD, et al. (2008) GPU computing. Proc IEEE 96:879–899.
34. Hossain Z, Bumbacher E, Blikstein P, Riedel-Kruse I (2017) Authentic science inquiry

learning at scale enabled by an interactive biology cloud experimentation lab. Pro-
ceedings of the Fourth (2017) ACM Conference on Learning@ Scale (ACM), pp
237–240.

35. Comer DE, et al. (1989) Computing as a discipline. Commun ACM 32:9–23.
36. Diehn B (1969) Phototactic response of Euglena to single and repetitive pulses of

actinic light: Orientation time and mechanism. Exp Cell Res 56:375–381.
37. Tsang ACH, Lam AT, Riedel-Kruse IH (2018) Polygonal motion and adaptable pho-

totaxis via flagellar beat switching in the microswimmer Euglena gracilis. Nat Phys
14:1216–1222.

38. Resnick M, et al. (2009) Scratch: Programming for all. Commun ACM 52:60–67.
39. Wong J, Hong J (2006) Marmite: End-user programming for the web. CHI’06

Extended Abstracts on Human Factors in Computing Systems (ACM), pp 1541–
1546.

40. Myers B, Ko A (2003) Studying development and debugging to help create a bet-
ter programming environment. CHI 2003 Workshop on Perspectives in End User
Development (Fort Lauderdale, FL) , pp 65–68.

41. Opher E, Niblett P, Luckham DC (2011) Event Processing in Action (Manning
Greenwich, Shelter Island, NY).

42. Overmars M (2004) Teaching computer science through game design. Computer
37:81–83.

43. Riedel-Kruse IH, Chung AM, Dura B, Hamilton AL, Lee BC (2011) Design, engineering
and utility of biotic games. Lab Chip 11:14–22.

44. Kim H, et al. (2016) LudusScope: Accessible interactive smartphone microscopy
for life-science education. PLoS One 11:e0162602, and erratum (2016) 11:
e0168053.

45. Doerr HM (1997) Experiment, simulation and analysis: An integrated instructional
approach to the concept of force. Int J Sci Educ 19:265–282.

46. Ma J, Nickerson JV (2006) Hands-on, simulated, and remote laboratories: A
comparative literature review. ACM Comput Surv 38:7.

47. de Jong T, Linn MC, Zacharia ZC (2013) Physical and virtual laboratories in science and
engineering education. Science 340:305–308.

48. Kim H, Gerber LC, Riedel-Kruse IH (2016) Interactive biotechnology: Building your
own biotic game setup to play with living microorganisms. Proceedings of the 2016
CHI Conference Extended Abstracts on Human Factors in Computing Systems (ACM),
pp 1000–1002.

49. Papert S (1980) Mindstorms: Children, Computers, and Powerful Ideas (Basic Books,
New York).

50. Resnick M, Silverman B (2005) Some reflections on designing construction kits for
kids. Proceedings of the 2005 Conference on Interaction Design and Children (ACM),
pp 117–122.

51. Katz E (2015) Biocomputing—Tools, aims, perspectives. Curr Opin Biotechnol 34:202–
208.

52. Ozasa K, Lee J, Song S, Hara M, Maeda M (2011) Two-dimensional optical feedback
control of Euglena confined in closed-type microfluidic channels. Lab Chip 11:1933–
1940.

53. Beni G (2004) From swarm intelligence to swarm robotics. International Workshop on
Swarm Robotics (Springer), pp 1–9.

54. Eiben CB, et al. (2012) Increased diels-alderase activity through backbone remodeling
guided by Foldit players. Nat Biotechnol 30:190–192.

55. Karr JR, et al. (2012) A whole-cell computational model predicts phenotype from
genotype. Cell 150:389–401.

8 of 9 | www.pnas.org/cgi/doi/10.1073/pnas.1815367116 Washington et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815367116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1815367116

EN
G

IN
EE

RI
N

G

56. Dede CJ, Jacobson J, Richards J (2017) Introduction: Virtual, augmented, and
mixed realities in education. Virtual, Augmented, and Mixed Realities in Education
(Springer), pp 1–16.

57. Huang A, et al. (2018) BiobitsTM explorer: A modular synthetic biology education kit.
Sci Adv 4:eaat5105.

58. Stark JC, et al. (2018) BiobitsTM bright: A fluorescent synthetic biology education kit.
Sci Adv 4:eaat5107.

59. Cybulski JS, Clements J, Prakash M (2014) Foldscope: Origami-based paper micro-
scope. PloS One 9:e98781.

60. Auer ME, Azad AKM, Edwards A, de Jong T (2018) Cyber-Physical Laboratories in
Engineering and Science Education (Springer, New York).

61. Milgram P, Takemura H, Utsumi A, Kishino F (1995) Augmented reality: A class
of displays on the reality-virtuality continuum. Telemanipulator and Telepres-
ence Technologies (International Society for Optics and Photonics), Vol 2351, pp
282–293.

62. Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring
of bacteria undergoing programmed population control in a microchemostat. Science
309:137–140.

63. Skilton RA, et al. (2015) Remote-controlled experiments with cloud chemistry. Nat
Chem 7:1–5.

64. Nichols LM (1992) The influence of student computer-ownership and in-home use
on achievement in an elementary school computer programming curriculum. J Educ
Comput Res 8:407–421.

65. Washington P, et al. (2018) Data from “Bioty source code.” GitHub. Available at
https://github.com.hirklab/euglenalab. Deposited January, 18, 2018.

66. Li X, Wang K, Wang W, Li Y (2010) A multiple object tracking method using kalman fil-
ter. 2010 IEEE International Conference on Information and Automation (ICIA) (IEEE),
pp 1862–1866.

67. Huang C, Wu B, Nevatia R (2008) Robust object tracking by hierarchical association of de-
tection responses. European Conference on Computer Vision (Springer), pp 788–801.

Washington et al. PNAS Latest Articles | 9 of 9

https://github.com.hirklab/euglenalab

