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Synthetic multicellular (MC) systems have the capacity to

increase our understanding of biofilms and higher organisms,

and to serve as engineering platforms for developing complex

products in the areas of medicine, biosynthesis and smart

materials. Here we provide an interdisciplinary perspective and

review on emerging approaches to engineer and model MC

systems. We lay out definitions for key terms in the field and

identify toolboxes of standardized parts which can be

combined into various MC algorithms to achieve specific

outcomes. Many essential parts and algorithms have been

demonstrated in some form. As key next milestones for the

field, we foresee the improvement of these parts and their

adaptation to more biological systems, the demonstration of

more complex algorithms, the advancement of quantitative

modeling approaches and compilers to support rational MC

engineering, and implementation of MC engineering for

practical applications.
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Motivation
How large numbers of cells spatially organize to collec-

tively perform complex functions is a fundamental ques-

tion in biology and engineering (Figure 1). Deeper insight

into this question can lead to practical biotechnological

applications because multicellular systems can perform

tasks that single cells cannot. We define multicellular

(MC) systems as collections of cells that are physically

adhered to one another and that perform a cooperative
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task. This includes, for example, MC organisms replicat-

ing through a germ line [1], biofilm ecologies [2�], or

artificial organoids [3]. It is also instructive to consider

systems outside of this strict definition that can be viewed

as ‘precursors’ of MC systems, such as self-organized [4]

or externally driven cell swarms [5]. Engineering MC

systems has many potential applications, such as artificial

tissues [6], modularizable biosynthesis pathways [7], pro-

grammable smart materials [8], and as a build-to-under-

stand methodology complementing traditional MC

research [9].

Here we review current concepts in rationally engineer-

ing and modeling spatial order and physical properties of

MC systems (Figure 1a). We then review recent advances

from the past two years in developing such systems and in

modeling approaches that directly address or have the

potential to significantly advance MC engineering.

Finally, we provide suggestions on future milestones

for the field.

Concepts
Much of current MC engineering is concerned with

achieving a desired MC morphology or MC pattern,

which are defined as the macroscopic arrangement of

cells in 3D space and the ordered identity of cells within

this arrangement, respectively (Figure 1b). Cell identity

in this context may refer to attributes ranging from

expression of a simple fluorescent reporter to complex

visco-elastic or biosynthetic properties, ultimately deter-

mining the appearance, behavior, and functionality of a

MC system.

Engineering MC systems benefits from a toolbox of

standardized parts [10] (Figure 2). Cell–cell adhesion,

cell–cell signaling, differentiation, and cooperation (in

various combinations) (Figure 2) are generally considered

to be the key elements of a minimal MC toolbox that

enabled the transition from unicellular to MC life [1]. An

extended MC toolbox may enable greater control of cell

features like movement, apoptosis, or shape changes. A

part can be, for example, a molecule, a gene, a circuit of

many genes cross-regulating their expression, or even a

specific cell type, but can also be combined into higher

order parts. The key purpose in having defined parts is to

have them serve as components that simplify MC-scale

engineering by combining such parts, similar to how

electronic transistors are combined into logic gates and
Current Opinion in Genetics & Development 2020, 63:95–102
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Figure 1
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Characterization of multicellular (MC) systems. (a) Studying natural MC

systems, engineering synthetic MC systems, and modeling MC

systems all inform one another. (b) The morphology and pattern of a

MC system determine its appearance and functionality.
further into CPUs. Such parts can be natural [11��],
modifications of natural parts [12��], or designed

completely de novo [13]. When developing or using

standard parts multiple properties should be considered
Figure 2
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Engineering MC systems requires physical parts that can be conceptually s

execute intrinsic and extrinsic MC algorithms that generate MC morphologi
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depending on the specific application needs [14]

(Table 1).

These parts are then combined to constitute the

hardware (or ‘bioware’) which runs morphogenesis and

patterning algorithms, that is, a set of basic instructions

that define a sequence of operations yielding a MC

structure (Figure 2). Algorithms can rely on intrinsic

manipulation (e.g. synthetic gene circuits), or on extrinsic

manipulation (such as light guiding input or deposition of

cells during tissue printing [5,15�,16]). Different algo-

rithms can lead to the same outcome, and each algorithm

comes with trade-offs. Algorithms are agnostic to the

specific parts, that is, the same algorithm can be imple-

mented through very different molecules and at different

time and length scales via different physical parameters,

for example in plants versus animals. Some of these

algorithms initiate the production of other parts, which

in turn may run additional algorithms.

Understanding which algorithm and parts to use is imper-

ative for rational and effective MC engineering. Modeling

aids design and interpretation of these choices and the

resulting dynamics. We distinguish between discrete

models, where cells (or subcomponents or clusters of

cells) are individually represented, and continuum mod-

els, where cellular discreteness is neglected [17]. While
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orted into toolboxes based on functionality. Parts can be combined to

es and patterns, which promise various applications.
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Table 1

Properties of parts—whether desired or not depends on application

Property Description

Genetically encoded Instructions contained within cell’s genome; can be part of a genetic circuit

Predictable Quantitative understanding of part functionality that enables rational design

Tunable Easy adjustment of part parameters, for example, input sensitivity or response strength

Programmable External control (e.g. through optogenetics) in real-time or prior

Orthogonal No crosstalk with/isolation from other parts and native biological functionality

Compatible Interfacing with other synthetic or natural biological parts or standards [10]

Extensible Easy adaptation of part to an arbitrary library of related parts

Modular Divisible into largely self-contained subparts with defined functions

Composable Ability to combine modular parts into new parts with predictable behavior [14]

Noise tolerant Either robustness to or utilization of inevitable biological noise

Evolvable Compatible with optimization through (directed) evolution

Functionalizable Modification with non-biological parts, for example, chemical surface additions
discrete models are often more computationally expen-

sive, significant progress in the underlying computational

frameworks [18,19] have empowered greater adoption of

discrete modeling either as software packages, for exam-

ple, CellModeler [19], PhysiCell [20], Chaste [21], or

bespoke implementations. Analytical treatments of bio-

physical models, while not always feasible, can also

provide deep insights [2�,22,23].

Recent advances in MC parts and toolboxes
Cell–cell adhesion proteins are critical to establishing and

maintaining MC morphology and pattern. Glass and

Riedel-Kruse [12��] developed a synthetic cell–cell adhe-

sion toolbox in Escherichia coli containing a composable

library of nanobody-antigen based proteins enabling

homophilic and heterophilic binding between cells

(Figure 3a).

Cell signaling is essential for cells to coordinate behavior

within MC systems. Billerbeck et al. [24] used G protein-

coupled receptors to build a modular and scalable inter-

dependent signalling network where individual yeast

strains signalled their neighbours to produce an essential

gene (Figure 3a). Scheller et al. [25] also demonstrated a

generalized extracellular-molecule sensor platform in

mammalian cells, employing a pair of antigen binding

proteins that bind different epitopes of a given signal.

This caused the transmembrane domains to dimerize and

activate one of several natural intracellular signalling

pathways (Figure 3a).

Symmetry breaking and differentiation is key to establish-

ing complex MC systems. Molinari et al. [26�] developed a

synthetic genetic circuit that achieves asymmetric cell

division in E. coli. Colocalized plasmids were retained by

only one daughter cell after cell division, creating an

irreversibly differentiated cell (Figure 3a).

Logical operations at the MC level enable a few signalling

pathways to accomplish a large number of functionalities.
www.sciencedirect.com 
Guiziou et al. [27] developed the Composable Asynchro-

nous Logic using Integrase Networks (CALIN), which

uses recombinases to achieve MC logic with 4 distinct

inputs [28]. The authors also demonstrated a key benefit

of multicellularity by distributing computation load

between multiple strains (Figure 3a).

Recent advances in intrinsic MC algorithms
Adhesion-driven self-assembly enables MC morphology

and pattern formation through the coordinated aggrega-

tion of individual cells. Glass and Riedel-Kruse [12��]
developed and used a synthetic adhesin toolbox to dem-

onstrate differential adhesion, phase separation, bridge

binding, and more complex self-assembly patterns in

bacteria (Figure 3b). Quantitative characterization of

pairwise microscopic interactions and microscopic spatial

organization enabled a heuristic probabilistic model to

predict MC adhesion morphologies and patterns at the

level of nearest-neighbor interactions (Figure 3c).

Cell growth combined with cell adhesion affects tissue

intermixing and separation. Kan et al. [19] expressed the

natural adhesion protein Ag43 in bacteria, and found that

adhesion among growing bacteria promoted mixing of cell

types that resulted in fractal tissue boundaries

(Figure 3b). The authors used discrete models to simulate

the biophysical processes (Figure 3c).

Multi-level patterning through signalling interlinked

with adhesion-driven cell sorting enables the self-organi-

zation of complex MC structures. Toda et al. [11��]
applied a previously developed synthetic juxtacrine sig-

nalling system to coordinate the differential expression of

natural cell–cell adhesion proteins. The authors were able

to create multi-level sequential MC assemblies, with the

capacity for symmetry breaking, cell type divergence, and

regeneration upon injury (Figure 3b).

Morphogen gradients can provide positional information,

such as in the ‘French Flag Model’ where the gradient
Current Opinion in Genetics & Development 2020, 63:95–102
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Figure 3
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Recent advances in MC engineering and modeling divided into the following categories: (a) New parts, (b) Morphogenesis and patterning

algorithms, (c) Modeling and design tools.
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instruct cells to differentiate at specific concentration

levels. Boehm et al. [29] designed an AND gate by

splitting T7 RNA Polymerase into two parts. Each part

was induced by one of two opposing diffusible chemical

signaling gradients, which led to a French-flag-like bac-

terial pattern. Icvara et al. [30] built and characterized a

synthetic toggle switch responding to the concentration of

a diffusible inducer. Bacteria were seeded in a grid where

the inductive chemical formed a diffusion gradient.

Robust patterns with sharp transitions were achieved,

where features like hysteresis, position, timing, and pre-

cision of the transition region could be controlled

(Figure 3b). Experiments aligned with modeling results.

Lateral inhibition and activation is a long-standing pat-

terning paradigm most prominently associated with jux-

tacrine Delta-Notch signaling. Toda et al. [11��] and other

groups before have engineered lateral inhibition circuits,

but highly ordered patterns have not yet been achieved.

Negrete and Oates [23] developed an analytically tracta-

ble lateral inhibition model to predict possible ordered

and disordered patterns (Figure 3c).

Reaction-diffusion patterns (or ‘Turing patterns’) are a

famous paradigm for spontaneous pattern formation, nev-

ertheless biological examples have remained elusive.

Karig et al. [31] have engineered bacteria that form a

stochastic activator-inhibitor system with relaxed Turing

conditions that generates disordered patterns (Figure 3b).

Sekine et al. achieved Turing-like results with mamma-

lian cells using Nodal as a short-range activator and Lefty

as a long-range inhibitor [32]. Duran-Nebrada et al. [62]

engineered synthetic activator-inhibiotor motif in a

microbial consortia that produced periodic spatial pat-

terns (note: reference was added during proof phase).

Population regulation is key for MC organisms in order to

keep cell proliferation and cell death in check. Liao et al.
[33�] engineered MC ecological interactions between E.
coli strains through an antagonistic ‘rock-paper-scissors’

dynamic. Kong et al. and Ozgen et al. [34,35] designed

bacterial consortia with defined social interactions

through chemical or contact dependent signalling. This

enabled dominance or coexistence among multiple

strains, leading to multistrain patterns with characteristic

feature sizes (Figure 3b). All groups supported their

results through differential equation-based or agent-

based modeling.

Recent advances in extrinsic MC algorithms
Optical biofilm lithography enables the controlled depo-

sition of bacteria onto surfaces. Jin and Riedel-Kruse

[15�], Huang et al. [8], and Moser et al. [36] demonstrated

high-resolution spatial patterning using bacteria

(Figure 3b). Jin and Riedel-Kruse implemented a discrete

Monte-Carlo simulation of cellular adsorption to better

understand biofilm formation dynamics [15�] (Figure 3c).
www.sciencedirect.com 
Closed-looped optical MC programming enables the

dynamic positioning and differentiation of cells with

real-time feedback. Washington et al. [37�] and Frangi-

pane et al. [38] used ’swarm programming’ to demonstrate

spatiotemporal patterns of motile photoresponsive

eukaryotic and bacterial cells (Figure 3b). Perkins et al.
[39] demonstrated a ’cell-in-the-loop’ approach to

optically drive cellular gene expression that generates

MC checkerboard patterns. Predictable swarm behavior

also enables development of higher level programming

languages, for example, ‘move cells left’ or ‘concentrate

cells within area x’ [5,37�].

Cellular compaction and morphogenesis rely on physical

forces generated by cells. Hughes et al. [40�] used sub-

strates patterned with DNA to adhere contractile fibro-

blasts at specific locations and alignments in hydrogels

(Figure 3B). Subsequent compaction by fibroblasts

allowed for predictable folding of substrate into prede-

termined shapes and configurations. Finite-element

modeling was used to predict the folding of the synthetic

tissues over time (Figure 3c).

3D bioprinting has been implemented by several groups

to engineer macroscopic MC morphologies. Huang et al.
[16] developed a platform to 3D-print bacteria that

secreted extra-cellular matrix proteins. Morley et al.
[41] studied the bending and buckling mechanics of

3D printed scaffolds including under cellular strain

enabling prediction of the final morphologies of 3D-

printed scaffolds after the effects of cellular contractile

forces.

Recent advances in MC modeling
While we have already discussed some modeling work in

earlier sections that were incorporated within MC engi-

neering projects, here we discuss additional recent work

with a greater modeling focus.

Discrete or agent-based MC models directly address

individual cells or subcomponents of cells in the simula-

tion. Hartmann et al. [2�], Kan et al. [19], and Warren et al.
[42] modeled bacterial biofilm growth by simulating

mechanical interactions between individual cells and

experimentally validated their models (Figure 3c). Simi-

larly, Ghaffarizadeh et al. [20] developed the agent-based

open source PhysiCell simulator to study the formation of

tumor spheroids in the context of cancer. Sussman et al.
[43] employed vertex-models, which treat cellular verti-

ces as discrete units, to study the sharpness of tissue

boundaries.

Continuous MC models ignore the discreteness of cells

and treat the system as a continuum. A major category of

continuous models are reaction-diffusion models, such as

the relaxed Turing-patterns of Karig et al. (Figure 3c) [31]

and Sekine et al. discussed earlier [32]. Multiple other
Current Opinion in Genetics & Development 2020, 63:95–102
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groups also investigated more general and relaxed con-

ditions for Turing-pattern formation [32,44–46], includ-

ing approaches considering more realistic mechanochem-

ical cellular environments [47]. Another class of reaction-

diffusion models are the Keller-Segel models for bacterial

chemotaxis, which were adapted by Cremer et al. [48] to

explain range-expansion dynamics of swarming bacteria.

Outside the category of reaction-diffusion models, Ko

et al. [49] used a continuous approach to model the effects

of adhesive forces in development, recapitulating adhe-

sion-based cell sorting.

Combined continuous and discrete MC models allow

more comprehensive simulations, for example when sim-

ulating discrete cells growing on a diffusible substrate.

Ebrahimi et al. [50] used an agent-based model coupled to

a reaction-diffusion framework to model the effects of

cooperativity and structure on the degradation of organic

materials by microbial communities. Undulation pro-

cesses were studied using a combined Turing-vertex

model by Okuda et al. [51] (Figure 3c). Multi-scale

approaches to study branching using agent-based models

were employed by Lambert et al. [52] to study kidney

branching (Figure 3c). Martinez-Corral et al. [53] intro-

duced a spatially extended mathematical model that

addresses the interplay between metabolism and electro-

physiology in growing biofilms.

MC computer aided design (MC-CAD) tools enable

rapid testing of designs in silico before committing to

the biological setting. Hughes et al. [40�] and Morley

et al. [41] applied traditional engineering tools such as

the finite element method (FEM) to predict morpho-

logical folding (Figure 3c). Tools have also been devel-

oped specifically for biological systems, for example,

Guiziou et al. [27,28] developed computational tools to

predict and design MC logic networks, allowing for rapid

prototyping of genetic designs by automatically compil-

ing desired outputs into DNA sequences (Figure 3c).

Morsut and Lam [54] developed a computational model

where contact-dependent cell–cell signaling and cellular

responses recreated known morphogenic trajectories for

synthetic MC spheroids (Figure 3c). Appleton et al. [55]

developed a computer-aided design approach for recom-

binase-based genetic circuits that control the formation

of arbitrary MC shapes (Figure 3c). Kriegman et al. [56�]
used evolutionary algorithms to automatically design

diverse candidate lifeforms in silico based on a desired

functionality, which were then tested with living sys-

tems (Figure 3c).

Physical models with swarm robots provide another

route for engineering and analysis of MC systems within

a non-biological medium. Slavkov et al. [57] demon-

strated self-organized morphologies and patterns in

swarms of hundreds of ‘kilobots’ based on local interac-

tions (Figure 3c).
Current Opinion in Genetics & Development 2020, 63:95–102 
Conclusions and future milestones
The biological cell provides a modular, smart building

block to generate complex MC morphologies, patterns,

and functionalities across scales of complexity, size, and

time. We are currently witnessing a field that is increas-

ingly capable of combining synthetic and natural compo-

nents to recapitulate and more deeply understand funda-

mental natural MC systems. However, successful

engineering of complex MC systems for practical applica-

tions is still in its infancy. Towards this goal, we propose

the following future milestones:

(1) A more advanced parts toolbox to increase control and

stability over MC systems, specifically including:

homophilic adhesins [12��], contact signaling [11��],
and control over cell growth, apoptosis, cell polarity,

symmetry breaking [26�] along all three axes, cell

shape, cell movement, and physical parameters like

visco-elasticity.

(2) A set of more versatile and complex MC algorithms,
for example demonstrating boundary formation

[19,43], and segmentation clocks [58].

(3) A self-replicating MC system that starts from a single-

celled ‘germ line’ and eventually produces more germ

cells.

(4) A self-sustaining MC system, for example, which

develops its own vascularization to distribute nutri-

ents [52].

(5) A MC system that controls its size during morpho-
genesis in 3D, for example, growing a bacterial colony

into a specifiable size and shape that is stable for a

long time period.

(6) A spatially organized MC biosynthesis consortium,

where individual reaction steps are distributed among

multiple cell types [59], and where spatial organiza-

tion further advances overall synthesis performance.

(7) A general multi-scale MC compiler that incorporates
gene regulation, cell mechanics, and diffusion

[12��,55,56�,60,61] wherein desired morphologies

and patterns are specified on a computer, and the

appropriate algorithms, parts, cell types, induction

levels, and so on are provided automatically.
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