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Use Cases 4

Zahid Hossain and Ingmar H. Riedel-Kruse 5

Abstract We review remote (or “cloud”) lab technologies for life-science experi- 6

mentation. Compared to other remote labs such as for physics, a particular challenge 7

arises from the variability and stability of biological materials. We describe andAQ1 8

compare four biology cloud labs that demonstrate different user interaction modes, 9

i.e., real-time and turn-based interactive, programmed, and augmented batch, 10

respectively, and furthermore regard their underlying hard and software architec- 11

ture, biological content (“bio-ware”) (i.e., microswimmer phototaxis, slime mold 12

chemotaxis, bacterial growth under antibiotics, RNA folding), and various other 13

features such as the time required for one experiment or scalability to large user 14

numbers. While we generally focus on educational use cases, research applications 15

are included as well. General design rules for biology cloud experimentation labs 16

are derived; open questions regarding future technology and opportunities for wide 17

deployment are discussed. We hope that this review enables stakeholders from the 18

life sciences, engineering, and education to join this relevant and exciting field. 19

Keywords Biology · Life sciences · Remote experimentation · Online 20

experimentation · Cloud lab · Education · Biotic processing unit (BPU) 21

11.1 Introduction 22

Being able to perform versatile biology experiments online has many applications 23

for research and education. Many access barriers to life-science experimentation 24

exist for academic and commercial research, mainly due to professional training 25

needs, cost of equipment purchase and operation, and safety considerations (Sia and 26
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Fig. 11.1 Biology cloud experimentation labs enable remote users (scientists and students) to
conveniently carry out life-science experiments online
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Owens 2015). Remote operation of biology experiments in the cloud (Fig. 11.1) 27

has been suggested to help lower these barriers (Hossain et al. 2015, 2016). Since 28

biological investigations are diverse—unlike general-purpose computing, there is 29

no clear foundation (e.g., binary 1s and 0s) for executing all types of experiments— 30

different types of back-end instruments and online architectures are needed to 31

address the duration of an experiment, the response time of the biological material, 32

and the frequency of user interactions. 33

Multiple approaches to implement biology cloud labs have been developed but 34

only rather recently (i.e., over the past ∼4 years): We previously developed two 35

interactive biology cloud lab architectures that were real-time (Hossain et al. 2016) 36

and turn-based (Hossain et al. 2015); commercial and academic entities developed 37

noninteractive biology cloud labs where experiments can be programmed (Riedel- 38

Kruse 2017; Transcriptics 2015; Klavins 2017), and online citizen science games 39

have been deployed that provide the user with experimental feedback (EteRNA) 40

(Lee et al. 2014). All these labs have been used in educational contexts to various 41

extends. 42

These four approaches can be categorized based on their directness and flexibility 43

of the user interactions, which is enabled and constrained by the underlying archi- 44

tecture: (1) “Real-time interaction” enables direct experimentation and adaptive user 45

input on the sub-second time scale, while the experiment is running (Hossain et al. 46

2016). This is suited for biological phenomena with response times on the scale 47

of seconds. Experiment duration is typically short (minutes), and a user obtains 48

sole and direct control of a single instrument for a time period on the scale of 49

minutes (although both requirements could be relaxed, in principle). (2) “Turn-based 50

interaction” also enables direct experimentation and adaptive user input, while the 51

experiment is running, but now on more discrete time scale, e.g., every few minutes 52

(Hossain et al. 2015). The biological response time of interest is significantly 53

longer than 1 s, and no real-time interaction is required. Experiment duration 54

might be multiple hours, and experiments of multiple users can be multiplexed and 55

parallelized on a single machine or on multiple machines (again, these requirements 56

can be relaxed). (3) “Programmed batch” enables code-based instruction of one or 57

multiple instruments to execute a more complex series of experiments. Here, all 58

instructions are completely predefined before the experiment starts (Riedel-Kruse 59

2017; Transcriptics 2015; Klavins 2017), and no interaction or adaptions during the 60
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experiment are possible. This approach is particularly geared toward academic and 61

industrial research, where robots shuttle biological samples between fully automated 62

pieces of equipment, thereby enabling highly complex experiments on the scale of 63

hours. (4) “Augmented batch” enables the user to focus on higher level experimental 64

design tasks while abstracting away the particularities of controlling an instrument. 65

This is particularly useful for citizen science games (Lee et al. 2014) that provide 66

experimental feedback to online players. (Note that these four examples provided 67

here do not map exclusively onto these four categories, e.g., interactive labs can 68

be used for batch processing (Hossain et al. 2016), or pre-programmable labs 69

could be converted into turn-based ones (Riedel-Kruse 2017) depending on the 70

exact hardware setup. Furthermore, these approaches can be categorized along other 71

dimensions, and we will discuss throughout the paper.) 72

The goal of this paper is to provide an overview of these existing biology 73

cloud labs with a particular focus on educational uses, although we also con- 74

sider professional and citizen science. We highlight their architectures, practical 75

implementation, and user testing of these approaches; detailed descriptions of these 76

studies can be found in the original publications (Hossain et al. 2015, 2016; Riedel- 77

Kruse 2017; Lee et al. 2014). We also briefly mention purely virtual approaches, 78

i.e., simulations of biology experiments (de Jong et al. 2013; Heradio et al. 2016). 79

We provide a systematic comparison between these four approaches (Table 11.1), 80

and we discuss open questions for future larger-scale deployment and for increasing 81

the availability of distinct experimentation types. 82

11.2 Background and Motivation 83

Cloud labs are poised to help solve significant educational challenges. Familiarity 84

with advanced scientific practices and “authentic inquiry” (Chinn and Malhotra 85

2002; Pedaste et al. 2015; States 2013) are imperative for K-12 and college 86

education (Next Generation Science Standards, NGSS; States 2013; Bybee 2013) 87

but are difficult to achieve in real-world classrooms given logistics and cost (Chinn 88

and Malhotra 2002; Wellington 2007). In addition to traditional physical hands-on 89

labs, virtual and remote labs have been successfully deployed recently, particularly 90

in engineering and physics (de Jong et al. 2013; Heradio et al. 2016). User 91

studies have shown that hands-on, remote, and virtual modalities each have distinct 92

advantages given educational goals and situational contexts, but ultimately, the 93

question is how to best use these approaches synergistically (de Jong et al. 2013; 94

Heradio et al. 2016; Wieman et al. 2008; Bonde et al. 2014; Sauter et al. 2013). 95

Remote experiments in the life sciences have been lacking compared to these other 96

disciplines, in particular due to the added challenges and necessary logistics for 97

keeping biological materials healthy and readily available for extended periods of 98

time. 99

Modern biotechnology and life sciences are poised to provide solutions to these 100

challenges. Of particular importance are liquid-handling robotics (Kong et al. 2012) 101
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Table 11.1 Comparison of four biology cloud labs

User instruction
mode

Real-time
interaction

Turn-based
interaction

Programmed
batch

Augmented
batch

t3.1Biological substrate Euglena
gracilis

Physarum
polycephalum

Escherichia
coli

RNA

t3.2User controlled
variable (stimulus)

Light Food solution Antibiotics Nucleotide
sequence

t3.3Raw output data Image
sequence of
Euglena in
microfluidic
chip

Image
sequence of
Petri dish with
Physarum

Optical density
of bacterial
population

Single-
nucleotide-
resolution
chemical
reactivity
measurements

t3.4Processed data
output

Cell tracks Binarized
image

Growth curves Graphical
display of
secondary
RNA structure

t3.5Interactive
experimentation?

Yes (real-time) Yes
(turn-based)

No No

t3.6# Experiments per
run per BPU

1 6 96 10,000

t3.7# BPUs in cluster 6 3 1 1 (incl. manual
labor)

t3.8Duration of one
experimental run

∼1 min ∼48 h ∼24 h ∼1 month

t3.9# Exp. in 24 h ∼5000 ∼10 ∼100 ∼0.1
t3.10Cost per experiment ∼US $0.01 ∼US $10 ∼US $1 ∼US $0.2
t3.11Maximum frequency

of updated user input
600/run ∼250/run 1/run 1/run

(10/s) (6/h) (1/day) (1/month)
t3.12Actual # of updates

users made per run
∼5/run ∼3/run 1/run 1/run

t3.13# perceived available
choices per update

∼16 ∼400 ∼10 ∼4100

t3.14# choices per
experiment

>1000 >100 ∼10 ∼4100

t3.15Dimensionality of
experimental design
space

∼100 ∼5 ∼1 ∼4100

t3.16Extendability to
other experiments

Medium Low Very high Low

and integrated microfluidic devices (Balagaddé et al. 2005; Melin and Quake, 102

2007) that incorporate sensing and actuation devices, achieving very complex liquid 103

handling (often at high throughput) to fully automate sophisticated life-science 104

experiments (Fig. 11.2). These technologies are increasingly impacting our society 105

through their academic and industrial use, will potentially also soon lead to devices 106
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Fig. 11.2 Automation and cost reduction in life-science experiments via (left) liquid-handling
robotics and (right) microfluidics. (Images adapted from Kong et al. (2012) and Balagaddé et al.
(2005))
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of personal use, and may ultimately transform our daily lives as radically as modern 107

computing technology has done previously (Riedel-Kruse et al. 2011; Gerber et al. 108

2016). Hence, the life sciences and associated technologies should also be put at 109

the forefront of formal and informal education in order enable modern citizens to 110

navigate these new realities. 111

These new technologies and new educational needs both enable and motivate the 112

field of interactive biology (Riedel-Kruse et al. 2011; Gerber et al. 2016), in which 113

human users interact with microscopic organisms and processes in real time. In 114

addition to cloud labs (Hossain et al. 2015, 2016), these interactive technologies 115

have been implemented as biotic games (Riedel-Kruse et al. 2011, self-builder 116

smartphone kits (Kim et al. 2016), and interactive museum exhibits (Lee et al. 2015). 117

College-level device classes have been deployed around such interactive biology and 118

game project themes (Cira et al. 2015), and we expect future synergy as students 119

build interactive biology devices and put them online as remote labs (Hossain et al. 120

2016). User studies associated with these previous projects often identified standout 121

features of a real biological system compared to pure simulation (Hossain et al. 122

2015, 2016), although ultimately we believe that both real and simulations should 123

be combined synergistically for better educational outcomes. Advantages of real 124

biology labs include the chance of genuine discovery and also illustrating biological 125

noise and variability (Hossain et al. 2015, 2016). 126

To aid the design of instruments suitable for biological cloud labs (and interactive 127

biology in general), we previously introduced the conceptual abstraction of biotic 128

processing units (BPUs) (Hossain et al. 2015; Riedel-Kruse et al. 2011; Hossain and 129

Riedel-Kruse 2017; Lam et al. 2017). BPUs are instruments that have both sensors 130

and actuators that interface with the biological material, with standardized digital 131
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input/out channels for instructions and data transfer as well as standardized biolog- 132

ical input/output channels for handling the biological material (and potentially even 133

moving biological materials between different BPUs). 134

When setting up a biology cloud lab, several design specifications must be 135

considered depending on the deployment needs. In particular, in order to enable 136

K-12 and college education, the following features have been identified previously 137

as particularly valuable (Hossain et al. 2016): The system must (1) enable the types 138

of inquiry mandated (which would be very different for professional science vs. 139

educational K-12 purposes); (2) have a low entry barrier and be usable even at 140

the K-12 level; (3) be real-time interactive; (4) have a fast turnaround time (within 141

minutes); (5) be fault tolerant against biological variability and failure; (6) scale to 142

millions of users worldwide from a design as well as economic viewpoint; (7) have 143

a sufficiently large exploration and discovery space; and (8) generalize to many 144

other experiment types easily. For research purposes, additional requirements do 145

apply, such as high fidelity and reproducibility of the results, furthermore significant 146

versatility of instruments, and biological materials that can be processed. 147

11.3 System 1: Real-Time Interaction (Euglena Phototaxis, 148

Light) 149

This system was developed with the goal to allow direct, real-time interactivity with 150

microbiological systems—at cost and scale (Hossain et al. 2016) (Fig. 11.3). This 151

goal required a short overall experimental duration (at the scale of minutes) and full 152

automation to enable 24/7 access without much manual labor at the back end. 153

11.3.1 Architecture 154

On this platform, a single user becomes—for a limited amount of time—the sole 155

actuator of a remotely placed piece of equipment (BPU). The user management 156

system was implemented as a real-time queue. The primary new affordance of this 157

platform is a direct and closed interactive feedback loop between the user and the 158

biological system, but submitting fully preprogrammed batch experiments that are 159

executed serially at a later time is also possible. 160

The BPU for this implementation consisted of a simple microfluidic chip 161

(Whitesides 2006) housing the phototactic single-celled organism Euglena gracilis 162

(Fig. 11.3a, b) (Barsanti et al. 2012). The chamber on this chip is a square 163

(approximately 1 mm long, 1 mm wide, and 150 µm high) and has an inlet and 164

outlet for fluid and organism exchange. These organisms are imaged from above via 165

a webcam microscope. On each of the four sides of the chip, an LED shines light of 166

varying intensity onto the chip and where this intensity can be controlled by the user. 167
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Fig. 11.3 Real-time biology online lab architecture for light-based interaction with photorespon-
sive microorganisms. (a) Online users send light stimuli to Euglena and observe the response in real
time. (b) Back-end hardware. Euglena are replenished automatically from an upstream reservoir.
Scale bar, 50 µm. (c) System architecture. (Images adapted from Hossain et al. (2016))
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Euglena responded to these stimuli by swimming away from high light intensities 168

(Barsanti et al. 2012). Many more subtle responses to light are detectable in this 169

system, such as cells spinning around their own axes. Euglena cells respond to a 170

change in light conditions on the time scale of seconds, making them particularly 171

attractive for interactive experiments for students and even children. 172

A cluster of six such BPUs was set up, each of which was controlled by its 173

own microcomputer to control the LEDs, to stream live video, to post-process data, 174

and to communicate with the central server. The task scheduling concepts of high-AQ2 175

performance computing. The work of Etsion and Tsafrir (2005) was adopted to 176

design the central server. This server assigns BPUs and remote users according 177

to a non-exclusive group allocation policy, handles distinct BPU types, routes 178



UNCORRECTED
PROOF

Z. Hossain and I. H. Riedel-Kruse

Fig. 11.4 The Euglena cloud lab. (a) Landing webpage. (b) Live mode, with a virtual joystick
to control the intensities of the four LEDs. (c) Example of preprogrammed instructions for batch
mode. (d) Example of the cellular response to a light stimulus sequence from top to right (blue,
yellow). Scale bar, 100 µm. (Images adapted from Hossain et al. (2016))
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experiments to the best-suited BPU, and optimizes wait time through load balancing. 179

A webserver including databases then connects to the user on the client side. 180

Users perform real-time exploratory as well as preprogrammed experiments that 181

are executed at a later time, and users can download the data for analysis (Fig. 11.4). 182

The user controls the intensity and direction of the two-dimensional light stimulus 183

via a simple online joystick. 184

A particular affordance of this BPU and organism is the opportunity to implement 185

a low-cost, fully automated cloud lab. Euglena cultures are typically stable over long 186

periods (multiple weeks) without much care given appropriate growth medium and 187

light for photosynthesis. The microfluidic chip is connected to an external Euglena 188

culture, and hence fresh Euglena can be automatically exchanged into the culture 189

via an automated valve whenever needed, typically every few days, yielding a fully 190

automated platform that requires <15 min maintenance once each week per BPU. 191

Another important feature is an automonitoring framework in which each BPU runs 192

an experiment automatically every hour, thereby determining the density of cells as 193

well as their velocity and responsiveness to light. If these parameters are outside 194

the desired regime, then the system attempts to correct itself by autoflushing fresh 195

organisms into the chip. If the system still is not appropriate, then lab personnel 196

are notified to service the BPU. Given that there are multiple BPUs in the cluster, 197
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remote users have a very high chance (>99%) of finding at least one functional BPU 198

available at any time; the webserver then also routes users to a “good” BPU. Such 199

automonitoring and self-correcting schemes are essential for delivering cloud labs 200

containing variable, fragile biological materials at low cost and high scale. 201

11.3.2 Deployment in K-12 Education and Assessment 202

This platform has been used and tested in multiple middle schools (Hossain et al. 203

2016). During one study, the cloud lab was projected to the front of a class (27 204

students, seventh and eighth grade; Fig. 11.5 left), so that all students could do 205

the experiments together. Students then analyzed their data in pairs on their own 206

computer and finally engaged with a virtual modeling environment (see also details 207

in Sect. 11.7, Fig. 11.16) to fit parameters. In another study, 34 students (eighth 208

grade; Fig. 11.5 right) working individually or in pairs used the iLab (Harward 209

et al. 2008) batch interface to submit instructions for light stimuli. The system 210

ran experiments for these students, and the students received movies for analysis. 211

Students chose a diverse set of designs: some explored light intensity, some tuned 212

the light direction, and other students were less systematic. 213

In both middle-school deployments, it became clear that students liked the 214

activities overall, that the students felt empowered, and that there was a positive 215

educational outcome. While it is possible to introduce the system in one or two 216

class sessions, there should be sufficient time for each student to understand the 217

system and to run multiple experiments. Due to restrictions on class time, firewall 218

restrictions, and the number of available setups, it was not always possible to let 219

each student run as many experiments as desired. In general, it appeared that five to 220

ten experiments lasting 1 min each would be ideal for each pair of students. 221

Fig. 11.5 Middle-school deployment of the Euglena cloud lab. Left, projection of the setup to the
front of the class. Right, Euglena cloud lab use through the iLab platform via batch mode. (Images
adapted from Hossain et al. (2016))
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11.3.3 Deployment in College Education and Assessment 222

It was also tested whether university students taking a professor-led theory- 223

based biophysics class could successfully carry out experiments and sophisticated 224

quantitative data analysis from home in a self-paced manner on this platform (Fig. 225

11.6) (Hossain et al. 2016). Over 14 days, ten students, working individually, 226

completed a homework project focusing on concepts regarding microswimmers, 227

diffusion, and low Reynolds number hydrodynamics (Purcell 1997). Using the 228

live mode (Fig. 11.4b), students explored Euglena light response behavior and 229

made cells swim along geometric paths (Fig. 11.6a). Students were able to self- 230

discover semiquantitative relationships, e.g., reporting that the “fraction of Euglena 231

participating in the directed motion seems to increase as you hold the joystick 232

longer, and depending on the intensity of the light.” They performed back-of- 233

the-envelope analyses of Euglena size (∼50 µm), speed (∼50 µm/s), and drag 234

and propulsion forces (∼10 pN) (Purcell 1997), experimentally confirming lecture 235

content. Students then analyzed self-generated large-scale batch data (Fig. 11.6b) 236

in MATLAB to test two hypotheses: (1) Do Euglena behave like passive Brownian 237

particles? (2) Does the population-averaged velocity differ between dark and light 238

conditions? These results demonstrate that even 1 min experiments provide students 239

with rich experimental data including hundreds of auto-traced cells, supporting 240

sophisticated statistical analysis. The logged data also revealed that students 241

accessed the system at their own convenience at day and at night and that they 242

engaged in different modes of experimentation. 243

Fig. 11.6 User studies in middle school and college demonstrate the utility of the platform for
face-to-face and online education. (a) University students performed exploratory joystick-based
experiments from home. (b) Automatically generated large-scale data (hundreds of cells) using
batch mode allowed students to investigate two hypotheses. Left: Are Euglena active or passive
particles? Right: Does the population-averaged swimming speed depend on light conditions?
(Images adapted from Hossain et al. (2016))
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11.3.4 Deployment in a MOOC Setting and Assessment 244

An open online course was developed around this Euglena online lab and deployed 245

via the Open edX platform (Hossain et al. 2017). This online course with a remote 246

biology lab engaged >300 remote learners worldwide (Fig. 11.7 left) in the scientific 247

practices of experimentation, modeling, and data analysis to investigate phototaxis 248

of a microorganism. Participants typically took 2–6 h to complete the course during 249

a 1-week period. The course was reoffered weekly, which allowed to respond to user 250

feedback and to iterate on the course content. Overall, >2300 experiments were run 251

by these participants. 252

In contrast to the deployments on this platform described earlier, here students 253

were completely autonomous in their actions, although the course itself was 254

significantly scaffolded. In addition to the previously offered activities, this online 255

course incorporated data handling via Google Sheets (Fig. 11.7 right), which 256

was more amenable than MATLAB, especially since even middle schools are 257

increasingly using Google Sheets. Online users were asked to execute a final open 258

research project (a voluntary option in order to not overburden the students within 259

a 1-week period). Twenty-one students engaged in their own research projects, for 260

example, exploring how Euglena’s response depends on light intensity or duration 261

of the applied light. These students made discoveries that appear in the literature 262

(e.g., how Euglena sometimes “freeze” for ∼1 s if the light intensity increases very 263

suddenly (Ozasa et al. 2014)). Thus, users on such a platform can engage in realistic 264

scientific inquiry and make genuine discoveries. 265

Fig. 11.7 MOOC-scale deployment of the Euglena cloud lab. Left: System access pattern. Inset,
density of traffic sources by location. Right: Students exported data into Google Sheets, where
relationships could be plotted easily. (Images adapted from Hossain et al. (2017))
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11.3.5 Reflections and Next Steps 266

These deployments and user studies have shown that this Euglena-based platform 267

enjoys high educational affordances by enabling students to go through the major 268

components of the scientific inquiry paradigm, that the challenge level can be 269

adapted to specific educational needs (middle school to advanced college), that 270

the experimentation and discovery space is sufficiently rich, that the students and 271

teachers overall like these activities, and that the experiment duration and associated 272

costs are such that large-scale deployment seems feasible. Students performed 273

scientific practices and engaged in inquiry-based learning within a short time span 274

without logistical effort, which was impossible before. Our findings also suggest 275

that classrooms could be flipped in the future, with the students operating the lab as 276

homework (Fig. 11.8 ).AQ3 277

The experimental throughput and cost of such a Euglena-based platform scale 278

to massive user numbers and diverse curricular demands, from middle school to 279

college to MOOCs. There are >15 million high-school students in the USA alone, 280

and hundreds of millions of users in developing countries and remote locations 281

could access such platforms via increasingly ubiquitous smartphones (Ozcan 2014). 282

It was estimated that implementing lesson plans in which ∼1 million students 283

each run five to ten experiments per year could be achieved with ∼250 BPUs, a 284

modest back-end footprint of ∼10 m2, and standard 1 Gb/s internet connectivity. 285

Importantly, each experiment would cost less than 1 US cent; hence, cloud lab 286

access for all students in a class (34 students, 10 experiments each) would be less 287

than one live Euglena sample (∼US $7 plus shipping). 288

Given the generality of the BPU paradigm, other biological specimens, stimuli, 289

and experimental frameworks are amenable to this cloud lab framework. The 290

platform already supports complex investigations of microswimmers and microe- 291

cologies that are of current interest to the biophysics community (Romensky 292

Fig. 11.8 Expanding the Euglena cloud lab. Left: Setup to projects light patterns onto a
microfluidic chamber housing light-responsive Euglena cells. Right: Patterns drawn by user onto
a touchscreen are projected onto phototactic Euglena that accumulate in colored regions. (Images
adapted from Lee et al. (2015))
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et al. 2015; Goldstein 2015). Image data are information-rich (e.g., this platform 293

unexpectedly captured cell-division events); combined with a rich stimulus space, 294

many phenomena can be identified and systematically studied. Projector-based 295

setups for Euglena (Lee et al. 2015) enable a much richer set of spatiotemporal 296

stimuli, including the use of colors and more complex “mazes” for Euglena (Lam 297

et al. 2017). The communication and data protocols are not domain-specific; hence, 298

this platform is expandable beyond Euglena and light stimuli to a general class of 299

increasingly automated and low-cost/high-throughput experiments, such as those 300

involving valve switching in microfluidic devices (Balagaddé et al. 2005) and cloud 301

chemistry (Skilton et al. 2015). 302

The obvious next step is to deploy the current Euglena-based platform in more 303

classrooms, particularly in a teacher-autonomous fashion in which the teacher 304

creates the desired lesson plans, and where all students have enough time and 305

opportunity to operate the platform by themselves. The first studies along these 306

lines are currently under way. In order to achieve this goal, the platform must also 307

be scaled up from the current 6 to 20 online microscopes to enable all student pairs 308

in a typical classroom to work concurrently. 309

It would also be important to synergistically complement these online activities 310

with local hands-on activities, e.g., observing Euglena directly through a hands-on 311

microscope. Further, the modeling and simulation aspects should be extended, such 312

as demonstrated previously with the programming language Scratch (Resnick et al. 313

2009; Kim et al. 2016). Having students build their own interactive microscopes 314

(Cira et al. 2015; Kim et al. 2016), which could even be put online in the long 315

run, and empowering students to self-publish their experiments are other future 316

objectives. 317

Notably, since these experiments are controlled with a Raspberry Pi, a camera, 318

and a simple electronic board, other experiments outside biology, such as a physics 319

pendulum, could be amenable to investigation. Conversely, given that the back- 320

end experiments are kept sufficiently modular, integration into other cloud lab 321

frameworks is possible (Heradio et al. 2016). 322

11.4 System 2: Turn-Based Interaction (Slime Mold 323

Chemotaxis, Food) 324

This biology cloud lab architecture was motivated by the idea of enabling real-time 325

interaction between a remote user and a biological organism in a turn-based manner. 326

This interaction was intended to be visually intuitive, with the back-end hardware 327

being so simple that it could potentially be reproduced by students as a mini-cloud. 328
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11.4.1 Architecture 329

The architecture of this cloud lab is optimized to allow multiple users to share 330

multiple instruments (BPUs), each of which carries out multiple biology experi- 331

ments in parallel (Fig. 11.9) (Balagaddé et al. 2005 ). In order to enable turn-basedAQ4 332

interactivity, an underlying batch processing framework was developed. Batch 333

processing is increasingly common in the life sciences, including usage of high- 334

throughput hardware in which each machine typically handles only a specific type 335

of experiment with a specific set of instructions—many experiments can be executed 336

in parallel. Each BPU has its own controller and operates synchronously on its 337

own clock while querying the central database for updated instructions and for 338

sending the biological measurements back to the database. Multiple users access 339

their experiments remotely in an asynchronous manner, sending instructions and 340

checking for experimental updates at arbitrary times. This architecture enables 341

collaborative experimentation and optimal user distribution among BPUs. Users 342

are assigned their experiment slot prior to the experiment run, and they can 343

change the experimental instructions multiple times throughout the run. Hence, this 344

architecture coordinates asynchronous user actions with synchronous equipment 345

cycles to optimally utilize parallelized equipment. 346

As a specific demonstration, an experimental paradigm was developed for 347

studying the spatiotemporal chemotactic response of the slime mold Physarum 348

polycephalum to an oatmeal solution food trail (Fig. 11.9) (Hossain et al. 2015). 349

Physarum is a single-celled, multi-nuclei, cytoplasmic organism that forms active 350

and dynamic tube networks to search for food (Alim et al. 2013; Tero et al. 351

2010; Adamatzky 2010). Food trails of liquid oatmeal that are pipetted onto 352

the agar surface stimulate the growth and behavior of the organism, offering a 353

scientifically interesting as well as educational relevant experimental paradigm with 354

high-dimensional input and output spaces. 355

For this implementation, liquid handling-imaging robots (BPUs) were developed 356

from Lego Mindstorms (Fig. 11.9) (Hossain et al. 2015; Gerber et al. 2017); each of 357

three such robots could run six experiments in parallel. The organism was housed in 358

an open Petri dish, which was imaged from below and chemically stimulated from 359

above via dispensing droplets of nutrient solution. The BPUs communicated with 360

a Python-based webserver. The front-end user interface (UI) (Fig. 11.10) enabled 361

remote users to select a specific experiment (either one that is currently running 362

or one that had already finished and was archived). The experimental interaction 363

consisted of users graphically determining where and when liquid food stimuli 364

would be administered by the robot onto the Petri dish (Fig. 11.10b, c). Before the 365

experiment, a lab technician prepared fresh Petri dishes with Physarum. The BPU 366

then administered new stimuli (as determined by the remote user) and obtained 367

images every 10 min over an experiment that typically lasted 24 or 48 h. At the 368

end of the experiment, all data were archived, and the dishes and Physarum were 369

discarded. 370

This should be a reference to Fig. 11.7 (NOT 11.8)
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Fig. 11.9 Experiments and hardware for interaction with a slime mold. (a) A turn-based cloud
lab allows multiple asynchronous users to share equipment for synchronous experimentation. (b)
The spatiotemporal chemotactic growth response of Physarum (yellow) to an oatmeal solution trail
(red). (c) BPU consisting of a Lego pipetting robot and a flatbed scanner. (Images adapted from
Hossain et al. (2015))
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Fig. 11.10 UIs for the Physarum cloud lab. Users (a) choose a current or past experiments, (b,
c) dictate the position and timing of chemical stimuli, and (d) scroll and zoom through existing
image data. (e) Experiments are operable from multiple platforms, including smartphones. (Images
adapted from Hossain et al. (2015))
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11.4.2 Deployment in College Education and Assessment 371

This Physarum-based system was tested in a 10-week lecture-based graduate- 372

level biophysics class at a university. Four students had access to the cloud 373

experimentation platform throughout the course and performed ∼20 experiments 374

each. The students typically logged in two to three times during the run of each 375
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experiment. Throughout the course, the students progressed from guided work to 376

free exploration to self-motivated experiments that led to a final course project. 377

Students reported interesting observations in their experimental data and then 378

developed a biophysical model (which was the learning objective of the course) 379

to explain various aspects of their experimental data. 380

This user study revealed that the system was fully stable for the 10-week period. 381

Students self-reported that they liked the online experimentation system and that it 382

was a valuable addition to the otherwise theory-based class. Students also expressed 383

that using real biology experiments (rather than simulations) significantly increased 384

their motivation to explore these biological specimens. The analysis of all user 385

actions revealed differences in student behavior, for example, how much of the 386

previous experimental data was analyzed before conducting the next experiment. 387

Thus, this study highlights the potential of biology cloud labs for educational use as 388

well as for learning analytics (Romero and Ventura 2010). 389

As a final class project, the students were tasked to engage in the relevant 390

parts of genuine scientific practice: exploration, making observations, formulating 391

hypotheses, designing experiments, and developing a biophysical model. During 392

this project, two students made interesting observations on how the network 393

structure of Physarum depends on the overall size of the organism, as well as 394

how the shape of the organisms (number of branches and length distribution of 395

branches) dynamically changes over time (Fig. 11.11). One (nonbiology) student 396

was particularly struck by his observation that organisms with smaller masses had 397

fewer branches (Fig. 11.11i), which seemingly went against the notion of “self- 398

similarity across scales” in fractals that had been discussed earlier in the course. The 399

corresponding phenomena had not been described in the literature. The students then 400

collected more data and iteratively developed and improved a biophysical model 401

capturing these phenomena (Fig. 11.11ii–iv). These students are currently in the 402

process of submitting a full research paper detailing their biophysical model (Cira 403

and Riedel-Kruse 2017). Thus, biology cloud labs also show potential to be used for 404

genuine research, enabling students to perform deep inquiry over the internet. 405

11.4.3 Reflections, Lessons Learned, and Next Steps 406

A major challenge of this particular implementation was the back-end logistics 407

supporting these experiments. For example, approximately 30–60 min was always 408

required for a lab technician to prepare all fresh biological material before starting 409

the next round of experiments. Further, the overall footprint of the platform (a 410

server rack filled with three BPUs executing 18 experiments in parallel over 48 h) 411

does not easily scale to very large numbers of remote users in multiple institutions. 412

Nonetheless, this platform would be beneficial as a local cloud lab within a school, 413

for example, and where the chosen Lego Mindstorms implementation would allow 414

students to build and modify their own instruments (Danahy et al. 2014; Gerber et al. 415

2017). Swapping out the hardware (BPUs) for more professional, higher-throughput 416
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Fig. 11.11 Experimentation (left) and modeling (right) by graduate students using this cloud
lab. Middle: Iterative modeling motivated by the cloud lab. (i) Image data reveal size-dependent
network structures. Scale bars, 3 mm. (ii) Static symmetric bifurcation model. (iii) Static random
bifurcation model. (iv) Dynamic growth-retraction model. Right: Time sequence of the model in
(iv), compare to the sequence at left (Images adapted from Hossain et al. 2015)
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instruments would allow the execution of different types of experiments at much 417

larger scale and lower cost. 418

The cost and back-end logistics per experiment were significant and could be 419

estimated as follows (assuming this type of system would be deployed at much 420

larger scale). A BPU costs approximately US $500 in parts, and each BPU houses 421

six experiments, with three runs per week for 1 year, leading to 50*3*6 = ∼1000 422

experiments. Additional costs include lab personnel to maintain Physarum colonies, 423

prepare the agar plates, and prepare each experimental run, which is estimated 424

at 2 h per week or ∼US $100 in labor cost/week. Lab space would cost ∼US 425

$10/experiment. This estimate does not include the initial development of the 426

platform. 427

Overall, this system successfully supported students in their learning activities, 428

enabled the introduction of an experimental component into a theory-based class, 429

and empowered nonbiologist students to carry out biology experiments in depth, 430

effectively lowering access barriers. 431

11.5 System 3: Programmed Batch (Bacterial Growth, 432

Antibiotics) 433

The computational cloud and time-sharing paradigms (Fox 2011) have recently 434

inspired the development and deployment of biology cloud experimentation labs 435

for research, such as commercial platforms that can execute experiments semiau- 436
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tomatically (Transcriptic, Emerald Cloud Lab) (Sia and Owens 2015; Riedel-Kruse 437

2017; Transcriptics 2015; Hayden 2004). These commercial platforms provide a 438

large suite of instruments and reagents, with the ultimate vision of enabling the 439

automated execution of any academic or industrial experiment, in particular when it 440

comes to molecular and cell biology. 441

Here we also point to “Aquarium” (Klavins 2017), an academic “Laboratory 442

Operating System” where online users can choose from prespecified laboratory pro- 443

tocols and experimental workflows via an online web interface; these experiments 444

are then executed (in large part by manual labor, i.e., undergraduate technicians that 445

can be easily trained), enabling students and researchers to build, e.g., transgenic 446

strains online. 447

These platforms are different from the ones described earlier in this article as they 448

are not interactive during the experiment. Instead, all experimental instructions must 449

be provided before the start of the experiment. The experiments have turnaround 450

times on the scale of days or more. None of these labs had been used for education 451

previously; hence, a collaboration with the company Transcriptic was initiated to 452

test one of these platforms with students. These investigations are described in detail 453

in Riedel-Kruse (2017). 454

11.5.1 Architecture 455

Transcriptic has been developing a “Workcell” platform in which a robot shuttles 456

biological specimens, for example, contained in 96-well plates, between experimen- 457

tal instruments such as liquid-handling robots, imaging devices, and incubators (Fig. 458

11.12). Experiments can be fully programmed in Python. This overall framework is 459

under constant development; for example, some experimental steps are still executed 460

by hand but will eventually be automated. Hence, the general vision and roadmap 461

to full and flexible cloud experiment automation is clear. 462

11.5.2 Deployment in College Education and Assessment 463

To test the platform’s educational potential, bacterial growth under the influence of 464

antibiotics was chosen given its relevance for college level classes the relative ease 465

of implementation on the existing platform (Riedel-Kruse 2017). Initially, bacteria 466

were loaded into 96-well plates. Each student could claim 6 wells on that plate, 467

allowing 15 students to work at once, leaving a few wells as controls. Prior to the 468

start of the experiment, students defined the concentration of antibiotics in each well, 469

leading to different growth rates over ∼8 h (Fig. 11.13). Every 20 min, the amount 470

of bacteria in a dish was measured via spectrophotometry. This cloud lab did not 471

allow for interactive experimentation, i.e., users were not able to add antibiotics 472

throughout the experiment, but this could be added to this framework in the future. 473
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Fig. 11.12 Transcriptic Workcell, a custom robotic cellular and molecular biology laboratory.
(Image adapted from https://www.transcriptic.com/)
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Fig. 11.13 Customized Transcriptic UI for educational deployment. Left: Six antibiotic amounts
can be submitted. Right: Batch of data at the end of the experiment (time and optical density appear
on the x and y axes, respectively). (Images adapted from Riedel-Kruse (2017))
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A user study was run where 13 students could run 6 wells over 6 successive 474

rounds of experimentation (36 experiments in total). It was found that one to two 475

https://www.transcriptic.com
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Fig. 11.14 Student-generated data (dots) and fit to models (solid lines) of two antibiotic concen-
trations. (Images adapted from Barsanti et al. (2012))
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rounds were needed to familiarize the students with the platform. Students then 476

chose one of many growth models that had been discussed previously in class and

AQ5

477

fit their data to that model in MATLAB. Unfortunately, mutations arose in some 478

of the bacteria over successive experiments, and there were some other technical 479

issues, leading to not fully consistent results between experiments that made it more 480

challenging for the students to interpret their data. These technical challenges were 481

due to the early stage of platform development at the time but were later rectified by 482

the company with updated equipment and protocols (Fig. 11.14 ).

AQ6

483

11.5.3 Reflections and Next Steps 484

Overall, the activities were successful and allowed students to design and run their 485

own experiments, collect their data, and post-process the data. The exploration space 486

available to the students was rather low dimensional compared to the cloud labs 487

discussed earlier. The student’s only option was to choose one of six antibiotic 488

concentrations (they explored only a one-dimensional space). The concentration 489

was determined before the experiment started—there was no interactivity during 490

the experimental run. Further, the data consisted of zero-dimensional measurements 491

points, which is much less information rich than the image data in the other cloud 492

labs, rendering the experience more abstract than a classic experiment. 493

Based on Transcriptic’s business model, the cost of these of experiments was 494

∼US $70 per 96-well plate. This cost depends on the experiment type and is likely 495

to decrease in the future given advancements in the technology. This platform would 496

also offer a much higher variety of experimental types due to the diverse set of 497

instruments in the Workcell. The 96-well experiment suggests that high-throughput 498

experiments could be virtually partitioned between many users. The challenges 499

encountered due to early-phase technology also suggested opportunities for students 500

to confront the real messiness of biological experiments in an educational context, 501
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at the same time point to the importance of stability and robustness of cloud labs, 502

which is a particular challenge for biological systems. 503

In conclusion, commercial cloud labs are on the rise and afford interesting 504

opportunities to run very complex life-science experiments in the cloud. The cost 505

per student, in the range of US $30 (6 wells, 6 experiments), is not cheap, but in 506

a reasonable range for lab classes. Given existing technologies (robotics, range of 507

instruments, underlying scripting language), future opportunities should open up to 508

pool the experiments of many more students (e.g., using 1536-well plates), enabling 509

higher-dimensional experimentation (e.g., choosing from multiple antibiotics) as 510

well as interactivity (allowing users to change experimental parameters such as 511

antibiotic concentration throughout the run based on current experimental results). 512

To achieve these goals, corresponding UIs must be developed that also account for 513

educational requirements. From the company’s perspective, enough students must 514

use such a system to support the initial investment. Alternatively, the educational 515

value of this platform could begin with graduate-level research, and as these 516

platforms become less expensive and user friendly, their usage could expand even 517

into K-12 education. 518

11.6 System 4: Augmented Batch (RNA Folding, Nucleotide 519

Sequence) 520

A fourth set of biology cloud labs relates to citizen science games such as Foldit 521

(Cooper et al. 2010) and EteRNA (Lee et al. 2014). Both games enabled tens of 522

thousands of online players to participate in research by solving puzzles regarding 523

protein and RNA folding, respectively. EteRNA is special in that it additionally 524

provided experimental feedback for a smaller subset of (more expert) players. Foldit 525

was primarily virtual but has also been used in projects where player suggestions 526

were experimentally tested (Eiben et al. 2012). It should be noted that for these 527

projects, the experimental work at the back-end was not fully automated. Instead, 528

there was significant hands-on work by lab scientists—which does not matter much 529

from the remote user’s perspective. 530

11.6.1 Architecture 531

The EteRNA platform revolves around the scientific question of how a particular 532

RNA folds into its secondary structure based on its primary RNA structure (its 533

nucleotide sequence). Here, the online user is provided with a gamified graphical 534

UI displaying an RNA strand with the four nucleotides marked by letter (CGAU) 535

and color (Fig. 11.15). The user can change individual nucleotides and then instruct 536

the computer to calculate the currently predicted folding structure due to the base 537
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Fig. 11.15 EteRNA lets players explore the relationship between RNA sequence and secondary
structure. (Image adapted from Lee et al. (2014))
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pairing based on lowest energy considerations. Users are guided through a number 538

of puzzles of increasing difficulty. After users have gained sufficient understanding 539

of the platform and the RNA folding features by solving ∼120 puzzles, they are 540

allowed to participate in the lab. 541

Lab participation means that users are asked to come up with nucleotide 542

sequence that will fold into a desired target shape and which will then be tested 543

experimentally. For any given lab puzzle, each user makes her suggestion, and 544

then based on certain criteria, the most promising designs are chosen to be tested 545

experimentally. At the time of the first major deployment (Lee et al. 2014), the 546

experimental throughput was only eight designs per week and carried out in 547

significant part by manual labor; throughput has improved since then to ∼10,000 548

designs per month through parallelized microfluidic chip technology (Bida and Das 549

2012; Seetin et al. 2014) but still operated in part manually. The particular RNA 550

sequences are synthesized, and the nucleotide base pairings are assessed via single- 551

nucleotide-resolution chemical reactivity measurements (SHAPE) (Lee et al. 2014). 552

The experimental results (secondary structure and base pairing) are conveyed back 553

to the user with single-nucleotide resolution through an in-game visualization that 554

is similar to the original design interface (Fig. 11.15). 555

11.6.2 Citizen Science (and Educational) Deployment 556

During the first major deployment, >37,000 players experimented with this platform 557

(Lee et al. 2014). During each weekly round, players submitted their proposals 558

for designs to be tested, of which eight were chosen to be synthesized and tested 559

experimentally. Over successive iterations, the designs suggested by the best players 560

eventually consistently outperformed current RNA prediction algorithms, enabling 561

the development of better prediction algorithms that took into account the new rules 562

that players had identified. This development demonstrates the power of citizen 563

science, in particular when coupled with experimental feedback. 564
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So far, EteRNA has not been formally used nor assessed for formal education, 565

to our knowledge. However, Nova Labs (http://www.pbs.org/wgbh/nova/) created a 566

version of the simulation to support students learning about RNA in middle and high 567

schools, and we are aware of many K-12 and college instructors who use EteRNA 568

with their students. 569

11.6.3 Reflections and Next Steps 570

The costs for any experiment are due to labor and reagents, which for EteRNA were 571

estimated to be ∼US $2.000 per month or ∼US $0.2 per design. The experimental 572

design space of the platform is arguably very large since each position of the RNA 573

strand of given length N can be any of four nucleotides (4N, where N is already 574

given for a given lab, but could modified). The virtual part of the platform has 575

been deployed in various educational settings (unpublished results and personal 576

communication by Prof. Das). 577

It is interesting to note that “designing an experiment” through a highly aug- 578

mented user interface (including game elements) rather than operating or instructing 579

a scientific instrument directly. These citizen science projects (EteRNA and Foldit) 580

clearly demonstrate a very different avenue by which non-experts can be empowered 581

to do experiments and participate in research. The success of these projects certainly 582

motivates more fully automated and versatile cloud lab designs in the future. 583

11.7 Virtual Biology Cloud Labs and Interactive 584

Simulations/Models 585

Although it is not the primary goal of this article to extensively address virtual 586

biology labs, we would like to mention a few approaches (Fig. 11.16). (1) For the 587

Euglena online lab discussed in Sect. 11.3, a modeling environment had been co- 588

deployed (Hossain et al. 2016) that primarily allows students to perform parameter 589

fitting. (2) Modeling environments like Scratch (Resnick et al. 2009) have been 590

explored to enable students to program simple models of cellular behavior (Kim et 591

al. 2016). (3) Other groups have developed gamified laboratories (such as Labster) 592

that fully animate all lab components (Bonde et al. 2014). A number of other life- 593

science simulations exist, for example, as part of the PhET project (Wieman et al. 594

2008). We note that both real and virtual labs have their distinct advantages and 595

limitations, e.g., less cost at scale, and “running every experiment within seconds” 596

in virtual labs versus the potential for novel discoveries or changes in student 597

motivation in a real labs. Ideally, both approaches would be deployed synergistically 598

(de Jong et al. 2013). 599

http://www.pbs.org/wgbh/nova
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Fig. 11.16 Examples of virtual biology labs and simulations. Top: Middle-school students
modeling Euglena phototaxis. Bottom left: Modeling Euglena behavior in Scratch. Bottom right:
Gamified laboratory (Labster). (Images adapted from Bonde et al. (2014))
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11.8 Lessons: Performance Metrics for “Interesting” Cloud 600

Labs 601

Given that now a small but distinct and versatile number of biology cloud labs exist, 602

we are in the fortunate situation to be able to compare these labs (Table 11.1) and 603

to extract overarching themes and generalizable rules. A significant portion of these 604

insights would also apply to cloud labs outside the life sciences. 605

The four cloud-lab architectures we presented are all rather different from a 606

conceptual point of view. (1) The Euglena lab allows a single user to “own” an 607

instrument for a short period of time. The experiment is real-time interactive, 608

and biological responses are apparent within seconds. The low-cost and short 609

experiment duration make this approach scalable. Parallelization is achieved by 610

deploying multiple BPUs. (2) The Physarum lab shows how multiple experiments 611

that belong to different users are executed in parallel on a single instrument. 612

These experiments are interactive—the user makes changes while the experiment 613

is running, but there is a delay of a few minutes. The individual user does not have 614

direct control of this instrument. (3) The Transcriptic experiment is parallelized but 615

not interactive during the run at all. Given that the Workcell moves samples between 616

instruments automatically, it allows for essentially infinitely complex experiments 617

(all other platforms described here are confined to a specific experiment type). (4) 618

EteRNA is also parallelized, noninteractive, and provides feedback on the scale of 619
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weeks; the UI abstracts the process of experimental design into a game, although 620

it eventually becomes scientific research for the dedicated user. Each of these 621

platforms could be extended in the future. We expect that all four approaches will 622

have their place in education in the future, depending on particular applications. 623

Table 11.1 provides a comparison of the four labs, many features of which 624

could also be regarded as performance metrics. Which of these features are relevant 625

depends on the given application, but considering all of them in the planning phase 626

of developing a new biology cloud lab is recommended. For example, one can ask 627

how much a single experiment costs, how many experiments can be run per unit of 628

time, or how complex each experiment is, i.e., how many choices does it provide 629

to the user and how large the corresponding response (or discovery) space is. The 630

numbers in this table are largely estimate, and other criteria might be considered in 631

the future—overall we hope that this overview illustrates how to think about this 632

performance issue. A more detailed analysis will also be published in the future 633

(Hossain et al. 2017). 634

In the following, we discuss these and other considerations in more detail: 635

1. The size of the exploration space. How many parameters can an experimenter 636

change and how many distinct experiments can be run? For example, we 637

found that the Euglena experiments allowed for changes in light intensity and 638

direction on a 10-ms time scale. For simplicity, assuming a 1-min experiment 639

with 0.1 s resolution, four LEDs with ten intensity settings would gener- 640

ate an astronomical amount of measurements (104)600 distinct experimental 641

sequences. In contrast, the Transcriptic experiments allowed users to choose 642

among ∼10 antibiotic concentrations before the start of the experiment. 643

2. The size of the discovery space. Despite a large exploration space, many 644

experimental designs can have equivalent outcomes. Hence, we need to ask 645

how many experimental outcomes (“discoveries”) are possible. For example, if 646

Euglena essentially reorients to the light stimulus on a 10-s time scale, once 647

the user has discovered that behavior, he is done. In reality, image data may 648

capture a much richer range of responses to different light intensities, yielding a 649

larger and more complex discovery space. For example, Euglena displays many 650

subtle changes in behavior due to light stimuli; it even changes its shape due to 651

strong light. In general, it will be challenging to quantify the discovery space 652

completely, as exhaustive exploration is usually not practical. Choices should 653

be made whether to provide the user with the information-rich, raw data (e.g., 654

raw movies of Euglena behavior) versus processed and information-reduced 655

data (e.g., a table with positional information for the cells). 656

3. Combined exploration/discovery space. Combining both the input and output 657

possibilities for an experiment would quantify how “interesting” a platform is. 658

For example, in the MOOC deployment (Hossain et al. 2017), online learners 659

were asked to propose their own investigations. Approximately, 10 dependent 660

and 10 independent variables were identified, implying ∼100 experimental 661

investigations that could be executed, which for an educational setting is 662

certainly very interesting. We also refer to the paradigm of low floor, high 663
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ceiling, wide walls (Resnick and Silverman 2005), which describes how easy 664

it is to engage in a particular platform, but also how diverse and complex an 665

investigation can become. For example, in order to enable “authentic inquiry” 666

in the classroom (Chinn and Malhotra 2002), this amount of freedom is desired. 667

4. Biological variability as a challenge. For all four architectures, biological 668

variability requires significant consideration. On the one hand, keeping the 669

user experience and experimental outcomes consistent (within defined bounds) 670

is important, and not always easy. Significant layers of automonitoring, self- 671

correction, and controls can be deployed, as, for example, in the Euglena 672

lab (and which could still be improved). We therefore also recommend that 673

each instrument provides the user with quality measures for their experi- 674

ments (such controls are good practice for experimentation in general). Even 675

when a system has been stable for months, biology may still hold surprises, 676

such as mutations. 677

5. Biological variability as an opportunity. On the other hand, this variability 678

provides interesting phenomena that are absent from more deterministic physics 679

labs, potentially making the experiments more interesting and “lifelike.” Vari- 680

ability and noise in biological systems are active areas of research (Elowitz 681

et al. 2002). Students must be prepared to encounter variability, which can be 682

exploited to great educational effect. In either case, this variability needs to be 683

delivered within the proper educational context. 684

6. The benefits of “living” labs. Why not just simulate? Unlike pure simulations, 685

live biological organisms are highly complex systems with emergent, unpre- 686

dictable properties, providing educational opportunities for novel discoveries. 687

Student feedback captured this aspect, for example, with “It was fun to play 688

around with real organisms . . . ” (Hossain et al. 2016). Implementations should 689

also aim to harness this unpredictability and to convey it to the user. We note 690

that simulations and experimentation should be used in synergy. Cloud labs 691

should also utilize and feature the “realisms,” e.g., information-rich image data 692

(as in the Physarum lab) may be more enticing and interesting than a processed 693

graph of single-point measurements (as in the bacterial growth lab). The entire 694

instrumentation architecture should be conveyed so that the user can understand 695

it and feel agency. Real labs also provide students to be confronted with 696

experimental noise, anomalous data, and even failed experiments. Interacting 697

with living matter can also provoke ethical discourse that does not arise from 698

simulation alone, which again could be put to good use in an educational 699

context (Cira et al. 2015; Harvey et al. 2014). 700

7. Potential safety and ethical issues. The safety aspect should be considered. 701

Although remote experimentation can generally be considered much safer than 702

hands-on experimentation, remote users could potentially cause harm, e.g., by 703

hacking the system or generating dangerous biological material. Compared 704

to other science disciplines, biological experiments are special given that 705

particular biological organisms or types of experiment may fall under ethical 706
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regulations, e.g., animal rights. Additionally, users and bystanders may voice 707

their own concerns about what kinds of experiments with a given organism are 708

in good taste. Ethical analysis of biotic games (Harvey et al. 2014) has provided 709

some general guidelines and insights, even though the value of an “educational 710

experiment” is likely considered of higher priority than “game play.” 711

8. Time for executing one experiment (and time of one user interaction). A 712

lower time limit exists for any given biological process based on how fast the 713

experiment can be executed. For example, the effect of antibiotics on bacterial 714

populations can only be detected after hours, while Euglena responses due to 715

light are apparent within seconds. Note that these time limits can be pushed 716

to some extent by using instruments with higher spatial or temporal resolution, 717

e.g., the effect of antibiotics on bacterial cells can be observed within <1 h when 718

imaging individual cells directly (Kong et al. 2012). 719

9. Time required for experiment reset. The biological and instrument downtime 720

between experiments needs to be considered. In the case of the Euglena lab, 721

after the light stimuli have been turned off, the Euglena go back to their 722

prior state on the scale of 15–60 s. In the case of the Physarum lab, all 723

biological material must be replenished for each new experimental run. One 724

should also discriminate between the time it takes for the biological material to 725

reset and some other downtime of the instrument, such as processing the last 726

rounds of image data. Additional downtime results from instrument and biology 727

maintenance. 728

10. Experimental throughput. Many of these issues ultimately point to how many 729

experiments can be run in a given time. Experimental throughput can be 730

increased by shortening the duration of a given experiment (including the 731

necessary downtime between experiments), by parallelizing the number of 732

experiments on a given instrument (BPU), by increasing the number of 733

instruments in a cluster, and by replicating these BPU clusters at different sites. 734

11. Number of experiments and time required for user familiarization with the 735

platform. When deploying the experiment, students generally should do five to 736

ten experiments on a platform to allow for familiarization with the experiment, 737

to explore, and to collect controlled data. Even if the platform allows many 738

experiments in parallel, the student should have the opportunity for iterative, 739

successive operations. Hence, it should be determined how many experiments 740

are minimally required to promote a meaningful experience on the platform. If 741

the experiments are expensive, then training experiences (as in EteRNA) could 742

lower the load on the physical cloud lab. 743

12. Logistics and automonitoring. A major challenge compared to other online 744

platforms (such as remote operation of physics experiments) is the maintenance 745

required for biological material. Accordingly, choices must be made at the start 746

of the project to account for these logistics and—if possible—to make use of 747

specimens and hardware that minimize these challenges. The implementation 748

of automation and automonitoring is crucial and has been significantly achieved 749

with the Euglena cloud lab. Working with biological material and protocols 750

that show consistent behavior is important. Back-up instruments should also be 751
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considered. The increasing advances and cost reductions in biotechnological 752

automation (including high-throughput machines) will enable increasingly 753

more robust platforms, including commercial ones, in the future. 754

13. Cost per experiment (and the business model). The total cost of any individual 755

experiment (or a set of experiments that would provide a coherent investigation) 756

should be considered. These costs are driven by consumables, maintenance, 757

and service, as well as by the initial development efforts. The numbers 758

from Transcriptic may be the most reliable information currently available, 759

as they have an underlying business model. These numbers can be in flux, 760

and as technology improves and the concept becomes more common, costs 761

will certainly go down. Generally, a benchmark for comparison is the cost 762

of a similar experiment in a conventional, hands-on setting. As a relevant 763

comparison, shipment of living organisms from a school supply company starts 764

at ∼US $20 for ∼20 students; consumables for more sophisticated biology 765

experiments can easily go well above US $100. 766

14. Complexity and investment for initial setup, flexibility for future adaptions, 767

and ease of replication by others. Significant effort is required to initially 768

set up a platform. In the simplest case, remote screen sharing is a very fast 769

and easy way to enable remote biology experimentation and to prototype a 770

platform. How easily this platform can be operated and modified for other 771

experimental types is another important consideration. In that sense, the 772

Workcell approach is inherently much more flexible. Open source code and 773

building instructions could foster incentives for others to replicate and innovate. 774

We also expect that general operation and data handling standards for cloud labs 775

will emerge. 776

Conclusions on Specifications: The importance of each of these properties 777

depends on the application. Providing a fast and simple biology experiment to 778

millions of high-school students (e.g., to enable students to experience Euglena 779

phototaxis) has a very different requirement than providing a community of 780

hundreds of scientists with a platform to execute complex, versatile, and highly 781

precise experiments (as a company like Transcriptic may seek to achieve). 782

11.9 Next Steps and Open Research Questions 783

The educational effectiveness of the presented platforms has been demonstrated to 784

varying extents, but undoubtedly all platforms deserve more assessment through 785

wider student and teacher participation as well as controlled studies. The individual 786

studies for these cloud labs indicate learning gains, especially as self-reported by 787

students, but more systematic pre- and posttests are warranted. The Euglena and 788

Physarum cloud labs enabled students to perform biology experiments at a level 789

of sophistication that is absent from presential and online education. Empowering 790
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students to perform inquiry-based practices in which they construct knowledge like 791

professional scientists is a major achievement of these biology cloud labs. 792

We see several important avenues for future research and development on these 793

biology cloud labs. 794

1. Refining and testing course content for specific learner groups on the existing 795

platforms, such as middle- and high-school biology students, ultimately paving 796

the way for usage by several thousands or millions of students 797

2. Including other relevant scientific practices, such as collaborative teamwork and 798

model building 799

3. Having participants implement more complex projects all the way to geographi- 800

cally distributed team projects 801

4. Utilizing these platforms for deeper analysis using learning analytics to aid 802

instructors and educational researchers 803

5. Extending these platforms to other experiment types (other stimuli, other organ- 804

isms, and distinct types of microbiology experiments) 805

6. Updating BPU performance protocols, for example, to achieve automatic LED 806

brightness adjustment for optimal negative phototaxis and feedback to users on 807

“current instrument quality” 808

7. Exploring optimal UIs and scripting languages for online experiments and data 809

handling 810

8. Open standards that enable easier setup and modifications of biological cloud 811

labs 812

9. Ultimately bringing experts from different areas closer together, especially 813

bioengineers, software engineers, researchers into human-computer interactions, 814

and educators 815

11.10 Conclusions 816

We have presented four distinct user interaction modes and architectures for biology 817

cloud labs and discussed the importance of biological variability, automonitoring, 818

and domain-specific BPUs. These best practices could also be implemented for 819

cloud labs in other engineering disciplines (Heradio et al. 2016) in which labs 820

are currently mostly oriented toward single users and single devices. We primarily 821

focused on educational use cases, but emerging high-end research cloud labs were 822

included in our discussion. We conclude that the requirements and approaches for 823

such goals are very different but will be complementary and synergistic in the long 824

run. 825

Biological cloud (or remote) labs are particularly challenging, as the long-term 826

robustness of the biological matter requires additional manual work or automa- 827

tion to provide a consistent experience. On the other hand, complex biological 828

phenomena—especially when utilizing information-rich image data—constitute 829

very rich discovery spaces. Enabling students to perform inquiry-based practices 830
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in which students construct knowledge like professional scientists is another major 831

achievement of these biology cloud labs. Given that at least four biology cloud 832

labs have been successfully tested with hundreds of students (tens of thousands for 833

EteRNA), we are confident that biology cloud labs are feasible and useful. 834

Deploying biology cloud labs in education could help solve significant edu- 835

cational challenges and simultaneously provide economies of scale to help these 836

technologies to mature. With the more than 15 million high-school students in the 837

USA alone as well as the rise of MOOCs, education will be an important driver 838

of the development of biology cloud labs. Curricula are usually offered repeatedly, 839

allowing technologies to be developed iteratively and tested with many users. These 840

cloud labs provide a cost-effective and practical means to implement inquiry-based 841

learning and ultimately to accomplish the visions of NGSS (Bybee 2013) and the 842

National Research Council (2012). 843

Critically, the data-logging capabilities of any cloud system constitute a unique 844

opportunity to delve into how learners explore biological experiments that typically 845

have a great deal of natural variability. Learning outcomes can be thoroughly 846

investigated, e.g., in the context of bifocal modeling (Blikstein et al. 2012), when 847

real experiments are juxtaposed with modeling. Several studies have indicated that 848

combining reality (with variability and noise) and modeling (typically clean data) is 849

more beneficial for learning content than either strategy in isolation (Heradio et al. 850

2016; Blikstein et al. 2012). Moreover, there are indications that students typically 851

explore experiments in novel ways when data are shared with other students. These 852

affordances could be further investigated in a quantifiable manner by implementing 853

data-sharing capabilities in the application layer of our cloud lab. 854

Biological cloud labs open many interesting avenues for human-computer 855

interactions but require carefully designed UIs. Some experimentation styles benefit 856

from visual programming, while others may benefit from textual descriptions. Biotic 857

games (Riedel-Kruse et al. 2011; Lee et al. 2015; Kim et al. 2016) are another 858

interesting application of BPUs that may foster interest in biology in a playful 859

manner through gamification. Excitingly, games could be implemented in the top 860

UI layer of biology cloud labs. Phone-based internet-of-things instrumentation and 861

diagnostics provide another paradigm for distributed instrumentation (Ozcan 2014). 862

In summary, we foresee that the iterative development and deployment of biology 863

cloud labs in educational contexts will greatly benefit education and facilitate the 864

development of individual BPU clusters (one experiment type at a time). Certainly, 865

not all experiments can be carried out this way, but with cloud labs, a significant 866

portion of standard biological experiments can likely be implemented much more 867

cost-effectively and without complex logistics. Hence, an investigator (student or 868

professional scientist) can concentrate on experimental design and data analysis, 869

rather than on logistics and the hands-on skills required of a successful experimenter. 870

We expect that there will be synergy between educational and scientific research 871

performed in centralized facilities. We look forward to a future that fosters inter- 872

disciplinary participation and democratization of biology experimentation through 873

cloud labs. 874
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