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Lateral inhibition represents a well-studied example of biology’s ability to self-organize multicellular
spatial patterns with single-cell precision. Despite established biochemical mechanisms for lateral
inhibition (e.g., Delta-Notch), it remains unclear how cell-cell signaling delays inherent to these
mechanisms affect patterning outcomes. We investigate a compact model of lateral inhibition highlighting
these delays and find, remarkably, that long delays can ensure defect-free patterning. This effect is
underscored by an interplay with synchronous oscillations, cis interactions, and signaling strength.
Our results suggest that signaling delays, though previously posited as a source of developmental defects,
may in fact be a general regulatory knob for tuning developmental robustness.
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Many multicellular organisms produce spatially differ-
entiated tissues with single-cell precision [1–3]. Several
mechanisms may explain such precision, including
morphogen gradients [4], Turing patterning [5], and lateral
inhibition [6,7]. However, patterning fidelity—the scarcity
of observed defects relative to an ideal pattern—remains
challenging to explain given gene expression noise [2],
varying environments [8] and signal transduction delays
[9]. Here we specifically examine the role of intercellular
signaling delays in lateral inhibition and show that, in
fact, delays can guarantee high fidelity despite opposing
conclusions in closely related contexts [9].
Lateral inhibition signaling is responsible for checkered

patterns in a diverse set of processes such as vertebrate
neurogenesis [10–14], plant hair distribution [15], and
insect bristle formation [16–18] [Fig. 1(a)]. In the classic
metazoan Delta-Notch system [Fig. 1(b)], Notch receptor is
cleaved upon binding to membrane-displayed Delta ligand
on a neighboring (“trans”) cell. Notch’s remaining intra-
cellular fragment, a transcription factor, then downregulates
Delta [19] and controls cell fate. Moreover, recent work
[20–23] shows that Notch and Delta mutually inactivate on
the same (“cis”) cell surface. These interactions putatively
speed patterning [9,24], but no definitive role has been
established [9,20,22,24–27].
Signaling pathways such as Delta-Notch accumulate

delays [28] through protein production, trafficking, and
other processes. Despite known roles in other patterning
mechanisms [29–31], delays remain largely ignored in lateral
inhibition models [7,12,26]. As exceptions, Veflingstad,
et al. [32] and Momiji & Monk [33] did include explicit
delays, noting their contribution to oscillatory behavior, but
did not examine their effects on spatial defects. Barad, et al.
studied the related problem of differentiating a single cell
from a two-cell cluster, and noted that long delays impede
differentiation assuming either hysteresis or a differentiation
time cutoff [9]. Meanwhile, we examine spatial patterning

in many-celled tissues without these conditions and find

that long delays then in fact minimize spatial defects.
Mathematical model.—To simplify our analysis of

lateral inhibition, we abstract trans regulation into a motif
[Fig. 1(c)] in which a single protein species x down-
regulates like proteins in neighboring cells. While consis-
tent with mechanistic models (Sec. S1–2 [34]), this motif
bundles biochemical details such as mRNA transcription
and protein binding, and their associated time scales, into a
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FIG. 1. Lateral inhibition demonstrates high fidelity and single-
cell precision using delayed signaling pathways. (a) Biological
examples (from left: Refs. [13,15,17,18]) and our corresponding
models with and without defects. Longer-range models (root
and microchaetes) require next-nearest neighbor interactions.
(b) Notch-Delta signaling pathway, where Delta effectively
downregulates neighboring Delta. (c) Simplified trans-only delay
model of (b), equivalent to Eq. (1). Black cells in (a) correspond
to high xi.
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single repression term with effective delay τ. This motif
translates directly into our governing equation:

_xiðtÞ ¼ p0 þ
αkn

kn þ (
P

N
j xjðt − τÞ)n − βxiðtÞ þ σζðtÞ; ð1Þ

where xi is the ith cell’s protein level, p0 its basal
production rate, α its maximum production rate, k the
regulatory half-maximal input, n the cooperativity, 1=β the
characteristic protein decay time, N the number of nearest
neighbors, and σζ ¼ N ð0; σÞ a white noise function
simulating noisy gene expression. The sum over j repre-
sents accumulated repression from N neighboring cells.
Equation (1) and some initial analysis parallels work from
Veflingstad, et al. [32] and Momiji & Monk [33], who
explored dynamics primarily in the two-cell model.
Normalizing concentration X¼x=k and time T¼t=ð1=βÞ

leaves the nondimensional form

_XiðTÞ¼ ϵþ η

1þ (
P

N
j XjðT− γÞ)n−XiðTÞþρζðTÞ: ð2Þ

Signaling strength η ¼ α=kβ, leakage ϵ ¼ p0=kβ, and
noise ρ ¼ σ=kβ all denote production per decay time.
Normalized delay γ ¼ τβ denotes the ratio of delay to
decay times. We disregard ϵ, as leaky gene expression is
tightly regulated in the Delta-Notch pathway [47], and
is overwhelmed by noise (ϵ ≪ ρ). Outcomes are largely
unaffected by cooperativity n (Sec. S3 [34]), except that
n < 2 (1D) and n < 3 (2D hexagonal lattice) fail to pattern;
biological n typically ranges from 1–4 [48]. Thus just two
parameters, γ and η, dictate the patterning dynamics.
Biologically relevant protein levels x lie within the repres-
sive dynamic range near k, so X and hence η ¼ maxðXÞ
are ∼Oð1Þ, with ρ≲Oð1Þ. Literature values also support
biological γ ∼Oð1Þ (Sec. S4 [34]).
Parameter exploration.—Delay differential equations

such as Eq. (2) are challenging to study analytically due
to complex dynamics [49–53] and infinite-dimensional
initial condition spaces [54]. Instead, we numerically
integrated Eq. (2) to steady state from low, mostly homo-
geneous X as biologically relevant initial conditions
(Sec. S5 [34]), for simplicity in a 1D tissue of M cells
with circular boundary conditions. For each ðγ; ηÞ, we
recorded the error rate, defined as the percentage of
simulations that yielded defects, defined in turn as inter-
ruptions to the regular alternating pattern [Fig. 2(c)]. We
also recorded differentiation time Tsteady, defined as the
time until the system reaches steady state. Three regions
emerge [Fig. 2(a)]: (1) high error rates for low γ, (2) tran-
sient oscillations leading to defect-free patterning for high
γ, and (3) unpatterned tissues for low η. This suggests that
large delays provide robust patterning, albeit with reduced
speed [Fig. 2(b)], consistent with observations that delay-
induced oscillations slow differentiation [32] and qualita-
tively similar to the idea of error-free iterative selection [9].

Cell-local analysis.—We examined local interactions to
explain the vanishing error rate for high γ. In this regime,
whole-tissue, synchronous oscillations persist for many
cycles, with slight cell-to-cell differences superimposed.
To highlight these differences, we define the normalized
relative concentration r ¼ δ2½X�=σδ2½X�, with δ2½X� ¼ 2Xi−
Xiþ1−Xi−1 (Sec. S7 [34]), and find that cells organize
into domains [Fig. 3(a), pink rectangles] wherein cells
with high and low r alternate. Mismatched domains meet at
a boundary cell (pink arrows) with r ∼ 0. Larger domains
contain cells with larger jrj, their stronger regulation
causing boundary cells to align polarity with the larger
of their adjacent domains. The corresponding contraction
of smaller domains leads to defect annihilation (green
arrows). Fitting time to annihilation vs initial defect spacing
d yields Tannihilate ∼ d2 (Sec. S8 [34]), comparable to
defect diffusion within Ising models [55] despite different
underlying mechanisms.
Perfect patterning occurs if correction time, defined as

the time needed for all defects to annihilate, is shorter

(a)

(c)

(b)

FIG. 2. Increased signaling delay leads to vanishing error rate.
(a) Error rates and (b) differentiation times showing regions
where tissues are (1) often defective and lack oscillations,
(2) always perfect following oscillations, and (3) unpatterned
even with initial patterning. (c) Example time traces from these
regions with their steady state patterns. Starred cells have traces
highlighted in black. See Sec. S6 [34] for kymographs. ρ2 ¼ 0.1,
M ¼ 16, n ¼ 2.
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than differentiation time. Differentiation time grows
faster in γ than correction time. These two times meet
near the point where the observed error rate vanishes
(Fig. 3(b), Sec. S9 [34]), suggesting that large delays
slow differentiation so defects have sufficient time to
be resolved.
Global mode analysis.—Beyond this qualitative, cell-

local picture of delay-driven defect resolution, we next
examined quantitative, whole-tissue transitions across
the ðγ; ηÞ parameter space [Fig. 3(c)]. We sampled at high
resolution with 1000 noise-free (ρ ¼ 0) replicates for easy
comparison to analytics. In particular, we explain four
observations: (i) patterning requires a minimum signaling
strength, (ii) error rates are low just beyond this minimum,
and (iii) increasing delay past critical boundaries causes
oscillations while (iv) reducing error rates.
We start by linearizing about the unpatterned steady state

Xi ¼ X�, yielding

δ _XðTÞ þ ηmBδXðT − γÞ þ δXðTÞ ¼ 0; ð3Þ

where the constant mðX�Þ ¼ nðNX�Þn−1=½1þ ðNX�Þn�2,
and matrix elements Bij ¼ 1 if cells i and j are neighbors
and 0 otherwise. Diagonalizing B ¼ SDS−1 leads to M
equations for the components of δY ¼ S−1δX:

δ _YiðTÞ þ ηmDiδYiðT − γÞ þ δYiðTÞ ¼ 0; ð4Þ
where Di is B’s ith eigenvalue. Eigenvectors of B denote
modes of concentration deviation from X�, and δYi is the
amplitude of the ith mode. Of particular note are the lateral
inhibition ð1;−1; 1;−1;…Þ⊤ and uniform ð1; 1; 1;…Þ⊤
modes, corresponding to Di ¼ −2 and Di ¼ þ2, respec-
tively. Applying the ansatz δYiðTÞ ¼ AeλT yields a tran-
scendental characteristic equation

λþ ηmDie−γλ þ 1 ¼ 0: ð5Þ
The system δY becomes unstable when any δYi becomes
unstable, either at λ ¼ 0 (a saddle-node bifurcation) or
λ ¼ iω (a Hopf bifurcation). The former simplifies Eq. (5)
to ηmDi ¼ −1, which given _Xi ¼ 0, yields η ¼ X�½1þ
ðNX�Þn� and the condition

η ¼ −
nDi

N2

�
−
nDi

N
− 1

�
−ðnþ1Þ=n

: ð6Þ

The lowest η with unstable X� occurs at Di ¼ −2, where
unpatterned tissue shifts towards lateral inhibition, every
cell growing away from its neighbors [red dot-dashed line
in Fig. 3(c)]. This explains observation (i), that a homo-
geneous steady state is stable only below a threshold.
Numerically testing stability around nonhomogeneous

spatial patterns reveals similar bifurcations, purely depen-
dent on signaling strength η. The boundary for lateral
inhibition stability coincides with the red Eq. (6) patterning
threshold, while no defective patterns (Sec. S12 [34])
become stable until higher η [dashed brown line in
Fig. 3(c)]. For η between the brown and red lines, only
lateral inhibition steady states are stable regardless of delay.
In agreement with observation (ii), low and in fact zero
error rates are found just beyond the minimum signaling
strength required for patterning.
Analyzing the Hopf bifurcation λ ¼ iω, and separating

the real and imaginary parts of Eq. (5), leads to

η ¼ −
nDi

N2
cosΩ

�
−
nDi

N
cosΩ − 1

�
−ðnþ1Þ=n

;

γ ¼ −Ω cotΩ; ð7Þ
with Ω ¼ γω used to parameterize the curve. In the
direction of increasing ðγ; ηÞ, the first δYi to become
unstable corresponds to Di ¼ þ2, shown as the dotted
green curve in Fig. 3(c). Consistent with simulation, to the
right of this Hopf bifurcation a nearly uniform tissue

(a) (b)

(c) (d)

FIG. 3. Defect resolution is guaranteed past a critical γ,
with global stability changes driving local defect annihilation.
(a) Patterned domains (pink rectangles) have larger normalized
relative concentrations r (note contrast differences) and push
domain boundaries (pink arrows) together (green arrows). See
Sec. S7 for absolute concentrations [34]. (b) Pattern correction
time grows much slower with γ than differentiation time, allowing
time for defect resolution at high γ: η ¼ 5. (c) Theoretical
boundary curves match simulations. Arrows point towards
decreasing error rate, driven by large delays or weak signaling.
(d) All modes around limit cycle X̂ðTÞ become stable for high γ
except the lateral inhibition mode, which grows slowly (oscil-
lations filtered out for clarity). ρ ¼ 0 for T > 0, n ¼ 2. M ¼ 16
(b), (c), (d), and M ¼ 64 (a).
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oscillates synchronously near a limit cycle X̂ðTÞ, explain-
ing observation (iii) that increasing delay causes
oscillations.
To understand how these oscillations are driven towards

differentiation, we linearized around the cycle X̂ðTÞ,
yielding exactly Eq. (4) but with time-varying mðTÞ,
obtained numerically using Eq. (2). Subsequent numerical
integration of Eq. (4) reveals that solutions δYiðTÞ grow or
decay exponentially with superimposed oscillations.
Increasing γ causes amplitudes δYi to decay for all

modes around X̂ except lateral inhibition [Fig. 3(d)], which
grows more slowly but remains unstable. The γ where
lateral inhibition becomes the only growing mode [solid
green curve in Fig. 3(c)] coincides with sharply decreased
error rate, and explains (iv) that increasing delay reduces
error rates. This essentially guarantees perfect patterning
for initially low, near-homogeneous tissues, which are
drawn into X̂ oscillations and escape only via the lateral
inhibition mode. The dynamics then converge to just one
pair of stable fixed points (i.e., perfect patterning) out of
very many (defective) alternatives (≫ 103 for M ¼ 64).
Slow growth of the lateral inhibition mode at high γ also

explains the tradeoff between error rate and speed. In fact,
the tradeoff is so extreme that patterning using high γ to
preclude defects is too slow (Tsteady ≳ 500) to be biologi-
cally relevant. In contrast, a Drosophila tissue patterns
within ∼14 hrs [3,17,56,57] with signaling protein decay
time ∼10 min [58–62], a normalized patterning time of
Tsteady ≈ 84. Alongside similar estimates in other organisms
(Sec. S4 [34]), this suggests that a secondary mechanism
exists to accelerate defect resolution.
cis interactions.— Previous work suggests that cis

interactions [Fig. 1(b)] may speed patterning [26], increase
signaling cooperativity [24–26], and expand the patterned
parameter space [26]. To see if cis interactions could solve
the tradeoff, we added a variable decay rate f to Eq. (2):

_XiðTÞ ¼ ϵþ η

1þ (
P

N
j XjðT − γÞ)n − XiðTÞ

− f(Xi; XjðT − γÞ)XiðTÞ þ ρζðTÞ; ð8Þ

f ¼ k1
k2 þ XiðTÞ

(
P

N
j XjðT − γÞ)n

1þ (
P

N
j XjðT − γÞ)n ; ð9Þ

where k1 and k2 determine the strength and sensitivity of
cis effects, respectively. Intuitively, f describes accelerated
degradation in cells with lower concentration and whose
neighbors had higher concentrations in the past. This
effectively modulates delay dynamically [γ0 ¼ γð1þ fÞ],
and is consistent with the mechanistic model of Sprinzak,
et al. [26] (Sec. S13 [34]).
Simulations of Eq. (9) (Fig. 4, Sec. S14 [34]) show the

same regimes as Fig. 2, but with lower η patterning
threshold and smaller γ sufficient for proper patterning.

Minimal robust differentiation time reduces to Tsteady ≈ 80,
within our earlier estimate for real biological systems; other
k1; k2, or M may decrease Tsteady further. Thus we cor-
roborate increased parameter robustness [26] and show that
cis interactions allow robust, yet fast, patterning.
Tissue geometries.—Finally, we extended our model to

more general tissue sizes and geometries. We found that
larger tissue sizeM requires longer delay or lower signaling
strength to guarantee defect-free patterning. Accordingly,
the high-γ and low-η defect-free phase boundaries for M
cells in Fig. 3(c) have analogous curves in larger tissues
corresponding to fewer defects spaced M cells apart
(Sec. S15 [34]). We also tested a 2D hexagonal lattice,
and included next-nearest neighbors in both 1D and 2D
to model filopodia [27]. The latter yields longer spatial
patterns with neighboring “high” cells in 2D [Fig. 1(a)
microchaetes]. In every scenario, large delays preclude
defects, and cis interactions increase the optimal robust
speed. Parameter spaces for 2D and filopodia are squeezed,
however, with “large delays” ∼3× smaller than before.
Additionally, these tissues exhibit stable limit cycles of
X̂ðTÞ for γ ≳ 2, suggesting further mechanisms for 2D and
filopodia to enforce differentiation if large delays are used.
Discussion.—Based on our theoretical results, we pro-

pose several mechanisms for how real biological systems
can avoid defects. Tissues can use delay-driven oscillations
to ensure patterning fidelity, but incur longer differentiation
time (Tsteady ∼M2.03�0.12 with cis interactions, Sec. S15
[34]). Indeed, oscillations have been observed in Delta-
Notch systems [12,63], although such oscillations have not
been shown to be synchronous or tied to defect resolution.
Alternatively, tissues can use weak signaling to ensure
fidelity, but become susceptible to molecular noise as
differences diminish between “high” and “low” cells.
They also lose robustness to parameter variation, which
easily abolishes patterning or increases error rates. These
tradeoffs become biologically infeasible in very large

FIG. 4. cis interactions combined with delays enable fast
yet robust patterning. Error rate and differentiation time for
patterning with and without cis interactions. Grayed region shows
biologically relevant (Tsteady ≲ 85 [34], error rate ≲1% [9])
parameters with cis interactions; no such parameters exist for
trans-only regulation. η¼ 5, k1 ¼ 10, k2 ¼ 1, ρ2 ¼ 0.1,M ¼ 16,
n ¼ 2.
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tissues, where ensuring fidelity requires either exceedingly
long delays or impeccably tuned signaling strength. Natural
systems in this regime such as sensory organs [1,3] seem
to first differentiate quickly (low γ, high η), and then
remove resulting defects by cellular motion, division, or
apoptosis [64].
On a practical note, the predicted tradeoffs among

delays, signaling strengths, and patterning fidelity can be
measured phenotypically using modified Delta-Notch sys-
tems [13,65] in, e.g., Drosophila microchaete patterning
[9,16]). Varying intron lengths [28] to adjust mRNA
processing time (τ) and protein degradation tags [66] to
tune the decay time (1=β) both affect normalized delay
γ ¼ τ=ð1=βÞ. Modulated promoter strength (α) and oper-
ator sensitivity (k) [67] similarly tune signaling strength
η ¼ α=kβ. Such experiments would solidify signaling
delays as an overlooked developmental control knob,
and we hope our work encourages such further exploration
into the role of delays in controlling patterning fidelity.
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