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Nonlinear delay differential equations and their
application to modeling biological network motifs
David S. Glass 1, Xiaofan Jin 2 & Ingmar H. Riedel-Kruse 3✉

Biological regulatory systems, such as cell signaling networks, nervous systems and ecolo-

gical webs, consist of complex dynamical interactions among many components. Network

motif models focus on small sub-networks to provide quantitative insight into overall

behavior. However, such models often overlook time delays either inherent to biological

processes or associated with multi-step interactions. Here we systematically examine

explicit-delay versions of the most common network motifs via delay differential equation

(DDE) models, both analytically and numerically. We find many broadly applicable results,

including parameter reduction versus canonical ordinary differential equation (ODE)

models, analytical relations for converting between ODE and DDE models, criteria for when

delays may be ignored, a complete phase space for autoregulation, universal behaviors of

feedforward loops, a unified Hill-function logic framework, and conditions for oscillations and

chaos. We conclude that explicit-delay modeling simplifies the phenomenology of many

biological networks and may aid in discovering new functional motifs.
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B iological regulation consists of complex networks of
dynamical interactions1–5. Transcription factors control
production of other transcription factors6,7, kinases the

activation of other kinases1,3,4, cells the growth of other cells8,9,
and species the population size of other species10. “Network
motifs” describe particularly important substructures in biological
networks, such as negative feedback, feedforward regulation and
cascades2,6,11. The function of network motifs often depends on
emergent properties of many parameters, notably delays7,12,13,
and previous work showed that delays can lead to dramatic
biological changes, such as sustained oscillations12,14–17. Delays
are crucial to behavior in natural18–20 and synthetic21,22 genetic
oscillators, in development and disease2,7,14,16,17,23–31, and in
ecological booms and busts8. Despite such examples, there has
been no thorough treatment of network motifs with delays
included explicitly.

Here we provide a theoretical and practical basis for analyzing
network motifs with explicit delays, and we demonstrate the
utility of this approach in a variety of biological contexts.
Whereas network motifs are typically modeled using ordinary
differential equations (ODEs) with variables reacting to one
another instantaneously (timed by rate constants), we explore
network motif modeling using delay differential equations
(DDEs), which have derivatives depending explicitly on the value
of variables at times in the past. For example,

_xðtÞ ¼ αxðtÞ ð1Þ
is an ODE, and

_xðtÞ ¼ αxðt � τÞ ð2Þ

is a corresponding DDE, where x(t− τ) represents the value of x
at a time τ units in the past, making the effect of x on the current
rate of change of x delayed by a time τ. The time scales and delays
are thus explicit (Fig. 1), better capturing dynamics where
intermediate steps are not fast, as compared to ODE models,
which may fail to capture real delays, hide their effects by over-
simplification, or require additional variables and parameters to
predict complex phenomena17,23,32. Such delay models have been
productive in a variety of biological scenarios, such as processes
with many intermediate but unimportant steps33,34 and age-
structured populations34,35. Network models with delays have
also been explored in various contexts36–39. Intercellular signal
transduction, for example, requires multiple time-consuming
steps that are not negligible23,32.

With DDEs, multiple steps (“cascades”) within a network can
be rigorously simplified into a single step with delay (see
below), an approach which has been explored in a variety of
biological contexts18,33,34,40–42. This makes interpretation of
the phenomenology simpler than with ODEs and reduces the
number of equations and parameters in the model18,23. This
idea can be visualized by depicting regulatory networks as
directed graphs, with nodes representing biological species, and
pointed vs. blunt arrows indicating activation vs. repression,
respectively (Fig. 1). DDE models allow a single arrow to
faithfully capture many biochemical steps18,33,43, expanding the
available dynamics in a model with a reduced set of equations
and parameters. DDE regulatory models have in fact been used
widely to model a range of biological phenomena such
as development17,44 and hematopoiesis30,31. For instance, a 1-
variable ODE such as Eq. (1) can only produce exponential
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Fig. 1 Explicit inclusion of time delays in mathematical models of network motifs can reproduce non-delay models using fewer variables and
parameters, but can also lead to more complex behavior. a An example genetic regulatory network including genes X, Y, and Z, regulated by one another
either positively (activation, pointed arrow) or negatively (repression, blunt arrow). The model on the left incorporates no explicit delay terms, whereas
the model on the right incorporates explicit delay terms τx and τz. b Ordinary differential equations (ODEs) and delay differential equations (DDEs)
corresponding to (a) with regulation strengths αi, removal rates βi and cooperativities ni. c Numerical simulations of equations in (b) for one set of initial
conditions using parameters αx= 1, αy= 1.2, αz= 1.2, βx= βy= βz= 1, nx= ny= nz= 2 for the ODE simulation, and αx= 0.5, αz= 0.3529, βx= βz= 0.5,
nx= nz= 2 for the DDE simulations (dashed curves: τx= 0.8, τz= 0.1; solid curves: τx= 3, τz= 4). Note that delays can cause more complex dynamics
(e.g., transient oscillations) compared to models in which effects are instantaneous, and where both models give the same long-term steady state behavior.
Left: instantaneous effects modeled using ODEs, Right: delayed effects modeled using DDEs.
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growth or decay45,46. A corresponding DDE, such as Eq. (2),
can also oscillate (with amplitude approaching zero or infinity)
and, if nonlinear, lead to stable oscillations, bistability and
chaos13,26,47–49.

A key challenge in using DDEs is their mathematical com-
plexity relative to ODEs50,51. For example, while Eq. (1) is 1-
dimensional because one initial condition (x at t= 0) determines
all future behavior, Eq. (2) is infinite-dimensional, because x must
be specified at all times− τ ≤ t ≤ 0 to predict a unique
solution50,51. Concretely, the solution to Eq. (1) can be written as
a single exponential, while Eq. (2) generally must be specified as a
sum of an infinite number of exponential terms to satisfy initial
conditions.

Despite the challenges, much progress has been made in
analytical understanding of DDEs46,52,53, and numerical
methods exist for simulation54,55. We thus see an opportunity to
use DDEs to recapitulate dynamics found in ODE solutions of
network motif behavior with fewer genes and thus fewer mod-
eling parameters and equations (Fig. 1), a type of “modeling
simplicity.”

In this work, we thoroughly examine the most common net-
work motifs2,6 with explicit delays and present an approachable,
step-by-step view of the mathematical analysis (applying estab-
lished DDE methods34,51) in order to make such delay equations
easy to use for biologists and others. We show the essential role of
delays in autoregulation, feedforward loops, feedback loops,
multiple feedback, and complex networks, as well as instances
where delays may be ignored. A reference summary is provided at
the end in Table 2. Finally, we discuss how these results can be
applied to understanding fundamental design principles of var-
ious natural biological systems.

Results
Our results are divided up into 7 sections corresponding to 7
different regulatory networks of increasing complexity. An overall
reference table (Table 2) is included in the discussion.

Motif 0: direct Hill regulation. We first describe how we use
DDEs to model simple regulation of a gene Y by a gene X as the
most basic motif, and then provide a simple yet unified mathe-
matical framework for both activation and inhibition with delay.

Activation and inhibition can both be modeled with a single
unified function. We consider a transcription factor x regulating
the production of a protein y (Fig. 2). If x activates y, the pro-
duction rate of y increases with increasing x, generally saturating
at a maximum rate α. Often there is an additional cooperativity
parameter n which determines how steeply y increases with x in
the vicinity of the half-maximal x input value k. In this framework,
n= 0 is constitutive production, n= 1 is a Michaelis-Menten
regulation, 1 < n < 5 is a typical biological range of cooperativity,
and n→∞ is a step-function regulation. If x represses y, the same
conditions hold except that the production rate of y then decreases
with increasing x. A standard quantitative model for this behavior
is called the Hill function, and serves as a good approximation for
many regulatory phenotypes in biology, including transcription
and translation rates, phosphorylation, enzymatic activity, neu-
ronal firing, and so forth56,57. In general there may also be a
leakage rate α0 that yields constant y production in the absence of
x. The concentration of y is also generally removed at a rate β
proportional to its concentration. This removal term can represent
many biophysical processes, such as degradation, dilution, com-
partmentalization, or sequestration58,59; for simplicity we mainly
use the term “degradation.”

Together these can be written as:

_yðtÞ ¼ α0 þ
αxnðtÞ

kn þ xnðtÞ � βyðtÞ ðactivatorÞ: ð3Þ

If x instead “represses” y instead of activating it, the form is
similar:

_yðtÞ ¼ α0 þ
αkn

kn þ xnðtÞ � βyðtÞ ðrepressorÞ: ð4Þ

For biologically meaningful results, all variables and parameters
in these equations should be real and non-negative. Note,
however, that the activator case is equivalent to the repressor
case with n < 0. In this paper we will therefore allow n to be
negative, which is simply a notational modification used in order
to combine the two cases. With this notation, the effective
cooperativity is ∣n∣. Thus, we have:

_yðtÞ ¼ α0 þ
αkn

kn þ xnðtÞ � βyðtÞ
�1<n< 0 ðactivatorÞ
n ¼ 0 ðconstitutiveÞ
0<n<1 ðrepressorÞ

8><
>: :

ð5Þ
which provides a unified, single-function description for both
activators and inhibitors (and constitutive expression), providing
a powerful mechanism to analyze both cases simultaneously as we
will do throughout this work.

The negative value of n allowed here should not be confused
with the term “negative cooperativity” used in the binding kinetics
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Fig. 2 Direct regulation by activators and inhibitors can be captured
using a unified delay model. a The simplest regulation network consists of
a single input X directly regulating a single output Y. We use a dotted arrow
to represent either activation or repression, with an implied explicit delay.
b Direct activation (left) is represented by a pointed arrow and direct
repression (right) by a blunt arrow. c Time response (Eq. (7)) of activated
(left) and repressed (right) Y following a rise in X that exponentially
approaches a new steady state (ηX= 6) from zero (governed by
_XðTÞ ¼ ηX � XðTÞ). Note that the finite value of ηX leads to an effective
leakage slightly greater than ϵ for the repressor case. For the activator
(n=−2), we chose η= 5.6528 to match esthetically between the X and
Y steady states, such that ηX ¼ ϵþ η=ð1þ ηnXÞ. For the repressor (n= 2),
we similarly chose η= 5.5 to match esthetically between the X steady state
and Y initial condition, such that ηX= η+ ϵ. In both cases, γ= 2, ϵ= 0.5,
and ηX= 6. Initial conditions were X= Y= Z= 0.01 for all T ≤ 0.
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literature60, which in our notation would refer strictly to a negative
value of n with magnitude less than one (i.e.,− 1 < n < 0). The Hill
function has an inflection point for all ∣n∣ > 1, which allows there to
be 3 fixed points for n < 0 when feedback is introduced below
(Supplementary Fig. 1).

Delays may be present in regulation, but are not modeled in
removal. Converting Eq. (5) from ODE to DDE to account for
explicit delay τ in regulation, we replace x(t) with x(t− τ) in the
regulation (Hill) term, but not in the removal term, which is
directly dependent on y itself, and thus not expected to have any
delay. A delayed removal term can also in general lead to negative
values, limiting its use in a biological context. This form of reg-
ulation is quite general, but for concreteness we will generally
refer to quantities like x (or y) as the concentrations of some
protein x. Thus we arrive at an explicit-delay DDE model of
activating or repressive biological regulation as follows:

_yðtÞ ¼ α0 þ
αkn

kn þ xnðt � τÞ � βyðtÞ
�1< n< 0 ðactivatorÞ
n ¼ 0 ðconstitutiveÞ
0< n<1 ðrepressorÞ

8><
>: :

ð6Þ

Nondimensionalizing yields 4 key parameters for any regulation.
We can non-dimensionalize Eq. (6) by dividing all concentrations
by the half-maximal input concentration k and dividing times by
the degradation time 1/β, which has the effect of measuring

concentrations in units of k and times in units of 1/β. This yields:

_YðTÞ ¼ ϵþ η

1þ XnðT � γÞ � YðTÞ
�1<n< 0 ðactivatorÞ
n ¼ 0 ðconstitutiveÞ
0<n<1 ðrepressorÞ

8><
>: ;

ð7Þ

with dimensionless variables X= x/k, Y= y/k, T= tβ, and
dimensionless parameters ϵ= α0/kβ, η= α/kβ, γ= τβ, and n. We
thus reduce the number of parameters from 6 to 4, and as dis-
cussed below, primarily η and γ are important. In this form, η is a
normalized “regulation strength” and γ is a normalized delay.
These dimensionless parameters can be considered “big” or
“small” by comparing their value relative to unity. For example,
γ= τβ ~ 1 implies that the delay (τ) and degradation (1/β) times
are approximately equal. In subsequent sections we generally
explore parameter values between 0.1 and 10. The dynamics of
direct activation and repression via Eq. (7) are demonstrated by
numerical simulation in Fig. 2c. For simplicity, here and in all
other simulations, we use constant initial conditions (variables
constant in time for T ≤ 0) unless otherwise specified.

Motif I: cascade (sequential regulation). A common network
motif in many biological networks is the cascade (Fig. 3), a series
of regulatory steps (i.e., x regulates y, which regulates z, etc.)2,6,61.
Since each regulator must reach the corresponding half-maximal
input value k before significantly affecting the next item in the
cascade, each step adds an effective delay. The following analysis
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Fig. 3 A delayed model of cascades recapitulates the implicit delays in ODE models. a A cascade is a linear sequence of regulation steps, here X
regulating Y regulating Z. b Standard models of cascades use ODEs (top), in which each step leads to a characteristic delay in the products Y and Z, which
increases with each step based on the half-maximal inputs and degradation rates for each step. In an equivalent DDE model (middle), similar behavior is
accomplished by replacing the explicit cascade of implicit delays with a single-step regulation including an explicit delay. A cascade in which each step
contains an explicit delay (bottom) behaves analogously to delayed direct regulation (as in middle), with the final step delayed by the sum of delays in each
step. ηX= 1.5, ηY= ηZ= 2.17, βX= βY= 1, βZ= 0.667, nX= nY=− 2. For the bottom graph in (b), each step is governed by Eq. (9) with identical
parameters.
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falls within a range of methods used to replace intermediate steps
with a delay18,41,42.

Delayed direct regulation approximates cascades of non-delayed
regulation. For a non-delayed cascade motif in which X regulates
Y, which in turn regulates Z (Fig. 3), one can write down a
nondimensional set of governing equations as follows:

βz
βx

_XðTÞ ¼ ηX � XðTÞ
βz
βy

_YðTÞ ¼ ηY
1þ XnX ðTÞ � YðTÞ

_ZðTÞ ¼ ηZ
1þ YnY ðTÞ � ZðTÞ;

ð8Þ

in which βx, βy, and βz are the dimensional degradation rates of X,
Y, and Z, respectively (Supplementary Note 1). We have included
here an explicit input function X for concreteness, but more
generally we can consider any input X(T) with characteristic
timescale 1/βx.

If Y changes quickly compared to X (i.e., βx/βy≪ 1), a first
approximation to arriving at a simplified model that ignores Y is
to replace the appearance in _ZðTÞ of Y(T) with the X-dependent
pseudo-steady state Ypss(X(T)) found by setting _YðTÞ ¼ 0. A
more precise estimate with the looser demand that ðβx=βyÞ2 � 1
can be found by using the same pseudo-steady state, but delayed
in time as Ypss(X(T− γ)), with γ= βz/βy (Supplementary Note 1).
Intuitively, this delay takes into account the fact that on the
slower timescale of X, Y effectively follows the dynamics of X, but
the delay accounts for the non-zero time βz/βy that it takes for Y
to respond to such changes in X (the βz deriving merely from
normalizing time T= tβz). By removing Y we lose certain
information, such as the ratio of Z or X to Y, but the inclusion of
a delay provides for a reasonably quantitative approximation of
the output Z’s dynamics as a function of the input X.

After plugging the delayed pseudo-steady state of Y into _ZðTÞ,
one can match the values of the composite Hill-within-Hill
function at X= 0, X= 1, and X→∞ as well its the slope at X= 1
compared to a single Hill function with leakage, and thereby
approximate the cascade as a single-step regulation of Z by X
(Supplementary Note 1):

_ZðTÞ � α0 þ
αkh

kh þ XhðT � γÞ � ZðTÞ: ð9Þ

where the combined regulation parameters are (Supplementary
Note 1)

α0 ¼ ηZ
1þη

nY
Y

sgn nYþ1
2

� �
α ¼ ηZη

jnY j
Y

1þη
jnY j
Y

kh ¼ 2jnY j�1
1þη

jnY j
Y

� �sgn nY

h ¼ � nXnY
2

2jnY j
2jnY j�1

� � : ð10Þ

The k can be removed by renormalization of X.
Equation (10) has several biological consequences. First, the

overall Hill coefficient h is negatively proportional to the product
of individual cooperativities nX, nY. This makes the cascade
activating for either two activators or two repressors, and
repressive otherwise. It also makes the cascade more cooperative
than its components, in line with past analyses62 and as found
experimentally61. Third, the leakage is zero for nY < 0 and
negligible (i.e., α0≪ α) for nY > 0 if ηY≫ 1. This means Y must be
produced in sufficient amount during the delay to repress Z. We
generally ignore leakage in the main text; for a more detailed
discussion see Supplementary Note 3 and Supplementary Fig. 2.

The total delay in a cascade equals the sum of individual delays.
For cascades with delays at each step, the same analysis implies that
total delay equals the sum of individual delays (βz/βy+ γy+ γz, with
γy the intrinsic delay between X and Y and γz the intrinsic delay
between Y and Z). Figure 3 shows simulations of ODE, equivalent
DDE, and multi-delay DDE cascade models, matching the above
analytical results.

Motif II: autoregulation. Autoregulation, one of the most
common biological motifs2,63, describes a single biological species
that regulates its own production (Figs. 4a–c).

The complete phase space for autoregulation demonstrates the
quantitative and qualitative importance of delays. Based on Eq.
(5), the governing equation for such a system with delayed reg-
ulation is given by setting Y= X (output equals input) in Eq. (7):

_XðTÞ ¼ ϵþ η

1þ XnðT � γÞ � XðTÞ: ð11Þ

This equation has four parameters (η, γ, ϵ, and n).
Since leakage must be small relative to regulation (i.e., ϵ/η≪ 1)

for regulation to be strongly effective (“activated” rate much
greater than “non-activated” rate), we will focus here on the case
with no leakage (ϵ= 0). We treat non-negligible leakage in the
supplements (Supplementary Note 3). Note that in general Eq.
(11) has no closed-form solution.

Fixed points do not depend on delays. Fixed points X(T)= X* do
not change with time, implying _XðTÞ ¼ 0 and X(T)=
X(T− γ)= X*. In Eq. (11), this implies that production must
balance degradation (Fig. 4d). For repressors (n > 0) there is
only a single fixed point for biologically relevant parameter
values. For activators (n < 0), there can be 1, 2, or 3 fixed points
(2 fixed points is a border case for−n > 1). Explicitly, the fixed
point values are given by

X� 1þ X�nð Þ ¼ η ð12Þ
or X*= 0 (for activators only). Again, we assumed ϵ= 0 for
simplicity. Note that these fixed points only depend on 1/η= βk/α
and ϵ/η= α0/α, and have no dependence on the delay time τ.

Linearization is sufficient to determine bifurcations in qualitative
behavior. Small disturbances from fixed points δX(T)= X(T)−
X*≪ 1 linearize Eq. (11) (Supplementary Note 2). Assuming a
solution δXðTÞ ¼ A expðλTÞ yields a transcendental “character-
istic equation” for the eigenvalues λ of Eq. (11):

λþ ηMe�γλ þ 1 ¼ 0: ð13Þ
The constant function of the fixed point value M(X*) is

defined as

MðX�Þ ¼ nX�n�1

1þ X�nð Þ2 ; ð14Þ

whose sign is given by n (positive for repressors and negative for
activators).

To determine stability of the fixed points, we solve for
conditions in which λ crosses the imaginary axis (Re λ ¼ 0),
occuring at either λ= 0 (a saddle-node bifurcation) or λ= iω (a
Hopf bifurcation).

Saddle-node bifurcations determine bistability in autoactivators.
For the saddle-node case (λ= 0), Eqs. (13) and (12) reduce to
(Supplementary Note 2):

η ¼ �nð�n� 1Þ��n�1
�n : ð15Þ
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which is biologically meaningful (η> 0; Im η ¼ 0) only for auto-
activation (n < 0), where− n is the biologically relevant quantity.
We can see that Eq. (15) separates monostability from bistability
by noting that the production and removal curves (Fig. 4d) are
tangent when Eq. (15) holds (Supplementary Note 2), yielding
two stable fixed points when η is above this boundary and only

one otherwise. For−1 < n ≤ 0, the origin (X*= 0) is unstable
(since M(X*= 0)→−∞), and it ceases to be a fixed point for n >
0. Note that this boundary does not depend on delay; however,
that does not preclude other features such as basins of attraction
from depending on delay64.

Viewed as a function of n, Eq. (15) limits bistability to −n > 1
and the boundary to 1 ≤ η ≤ 2 (Supplementary Fig. 1b). Since this
function is non-monotonic, it is also possible (although
biologically perhaps unrealistic except on an evolutionary time-
scale), to hold a value of 1 < η < 2 and decrease n to a point where
the bistability is lost, and then decrease n still further until
bistability is gained again.

Hopf bifurcations determine oscillatory behavior in autorepressors.
For the Hopf bifurcation (λ= iω), Eqs. (13) and (12) result in two
equations, one for the real parts of Eq. (13) and one for the
imaginary parts (Supplementary Note 2):

γ ¼ 1
ω �tan�1ωþ πkð Þ; k ¼ 0; 1; ¼

η ¼ jnjffiffiffiffiffiffiffiffi
1þω2

p jnjffiffiffiffiffiffiffiffi
1þω2

p � 1
� ��nþ1

n
:

ð16Þ

Equation (16) represent a series of curves parameterized by ω,
and is biologically meaningful (γ > 0, η > 0) for k ≥ 1. For
autoactivation (n < 0), these curves all lie above the bistability
boundary (Eq. (15)), and thus have no qualitative effect on
behavior. For autorepression (n > 0), however, the outermost
curve (k= 1) dictates the onset of oscillations for any n > 1.

This boundary has both horizontal (η) and vertical (γ)
asymptotes, given as:

lim
ω!0

ηHopf ¼ jnjðjnj � 1Þ�nþ1
n

lim
ω!

ffiffiffiffiffiffiffiffi
n2�1

p γHopf ¼
cos�1 �jnj�1� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p :
ð17Þ

Thus oscillations require both a minimal regulation strength
and a minimum delay. The vertical (γ) asymptote approaches zero
as n→∞, so large regulatory strength can achieve oscillations
even with minuscule delay if cooperativity is extremely steep.

The oscillation period can be approximated by linearization
near consecutive maxima and minima of the oscillation
(Supplementary Note 2). This method yields a period of
approximately 2(γ+ 1), or 2(τ+ 1/β) in dimensionful terms
(compare also to17). Biologically, this means that the concentra-
tion X is pushed from high to low (or vice versa) after the delay

Fig. 4 The complete phase diagram for the autoregulation network motif
has analytically derivable parameter regions for bistability,
monostablility, monostablility with damped oscillations, and oscillations.
a The autoregulation network motif, with a dotted arrow indicating either
(b) self-activation or (c) self-repression. The two cases are given by n < 0
(activation) and n > 0 (repression). d Stable (black circles) and unstable
(white circles) fixed points for activator and repressor cases are given by
the intersection of the regulation (solid) and degradation+leakage
(dashed) lines. Note that activators can have 1, 2, or 3 fixed points, whereas
repressors always just have one. e Parameter space showing all possible
behaviors for autoregulation with delay. Shading shows simulation results
(with an interval of 0.1 for both γ and η axes) and curves show the
analytically derived bifurcation boundaries. See Supplementary Fig. 3a for
cases−3 ≤ n ≤ 3 and Supplementary Fig. 3b for boundaries in η vs.
n parameter space. f Representative simulation curves for the four
qualitatively different behaviors, with different colors representing different
initial conditions (see “Methods”). ϵ= 0.
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time (τ) has elapsed and the concentration has equilibrated to its
new value via degradation (1/β).

Damped oscillations are expected when the largest eigenvalue
satisfying Eq. (13) has non-zero imaginary part. This is never true
for n < 0, and is true for n > 0 above the curve denoted “spiral
boundary” in Fig. 1e and Supplementary Fig. 3. This curve is
given as follows:

η ¼ nγeγþ1 nγeγþ1 � 1
� ��nþ1

n ; ð18Þ

which is derived in Supplementary Note 4. It approaches η= 0
for large delay and has a vertical asymptote at nγeγ+1= 1, so
there is some non-zero delay that has non-oscillating decay for
any strength η and finite n.

Putting together the derived boundary curves yields an η-γ
phase space for each n, displayed in Fig. 4e and Supplementary
Fig. 3a-b along with simulations showing that this analytical
treatment matches the dynamical behavior.

Leakage prevents oscillations and bistability. Autoregulation with
leakage (Supplementary Note 3) adds the extra parameter ϵ ≠ 0.
Small leakage ϵ≪ η does not change the qualitative results while
large leakage effectively overwhelms the regulation term, pre-
venting both oscillations (for autorepression) and bistability (for
autoactivation). The full treatment with leakage and the corre-
sponding phase portraits are presented in the supplements
(Supplementary Note 3, Supplementary Fig. 2).

Motif III: logic. A general class of functions used to describe
natural2,58,65–67 and synthetic68,69 biological networks are logic
gates, which have two inputs regulating a single output (Fig. 5).
Gates exhibit either high (“on”) or low (“off”) output depending
on whether inputs are on or off. For example, the AND gate
specifies high output only if both inputs are on. In this section we
provide a specific DDE-based framework that covers 14 out of 16
possible 2-input logic operations, and show that these operations
form a continuous 2D parameter space.

A two-parameter summing function reproduces all 2-input
monotonic logic gates. We first write out nondimensionalized
equations corresponding to the logic gate motif as depicted in
Fig. 5a. We assume that the degradation constants (β) for Z and R
are equal for simplicity, and that there is no leakage.

_ZðTÞ ¼ ηZ1
1þXn1 ðT�γ1Þ þ

ηZ2
1þYn2 ðT�γ2Þ � ZðTÞ

_RðTÞ ¼ ηR
1þZn3 ðT�γZÞ � RðTÞ; ð19Þ

We describe the regulation of Z by X and Y using a sum of Hill
terms. Logic gate behavior can be captured with other approaches
such as a product of Hill terms, or summation within a single Hill
term58,66,67,71, each representing subtly different biology. We
choose the separate Hill term approach as it describes many logic
functions simply by tuning regulatory strengths, and can be
extended to include multiplicative terms (Supplementary Note 5).
Caveats include multiple states for Z, requiring additional
binarization via R (Fig. 5c), as well as poor response to ratiometric
inputs, discussed in the next section on feedforward motifs.

Using Eq. (19), we can characterize the motif logic based on the
idea of dynamic range matching72. Every regulator in Eq. (19) is
effectively compared against unity in the denominator of the Hill
function for its corresponding output. For instance, Z provides an
“on” or “off” signal to R if Z > 1 or Z < 1 respectively. Z can take
on values below 1 as long as ηZ1 � maxðXjn1jÞ and
ηZ2 � maxðY jn2jÞ, otherwise Z will always activate R, as indicated
by the areas marked TRUE in Fig. 5.

Let us say that X and Y settle on steady-state values X*≡ ηX,
Y*≡ ηY, as inputs to our logic gate. A value of ηX or ηY
significantly greater than 1 is then “high” (true, 1), and “low”
(false, 0) if much less than 1. We then want to determine
whether Z* is greater than (true) or less than (false) 1. For
example, if n1,2 > 0 (two repressors), Table 1 gives the possible
steady states of Z. If ηZ1 and ηZ2 are greater than 1, these steady
states approximate a NAND gate. If they are less than 1, but sum to
greater than 1, the steady states instead approximate a NOR gate.

Equivalent calculations for all variations of n1, n2, ηX, ηY, ηZ1,
and ηZ2 (Supplementary Table 2) show that logic is dependent on
only two parameters, sgn ðn1ÞηZ1 and sgn ðn2ÞηZ2. These form a
2D parameter space that summarize the logic into a convenient
chart (Fig. 5b). This implies evolution or other tuning can
smoothly convert between logic gates (see also66,67). The chart is
symmetric on interchange of the two inputs (η1↔ η2, n1↔ n2),
and anti-symmetric (that is, application of logical NOT) by
conversion of an activator to a repressor or vice versa (ni→−ni).
Fourteen of the 16 possible two-input logic functions are
represented. All fourteen are monotonic in that Z(X, Y= 1) >
Z(X, Y= 0) and Z(X= 1, Y) > Z(X= 0, Y). The two non-
monotonic gates, XOR and XNOR, are not represented by this
simple logic motif, because summation (addition of Hill terms) is
monotonic. However, they can be constructed by connecting
several of these gates70,72.

The logic parameter space can be divided into AND-type, OR-type,
and single-input functions. Only the 8 regulatory functions on the
diagonals of Fig. 5 (excluding FALSE and TRUE) make use of
both inputs. These eight can be further divided into positive or
negative regulation on each arm (4 possibilities) in conjunction
with an AND or OR gate (8 possibilities total). Specifically, “OR-
type” logic applies when both ηZ1 > 1 and ηZ2 > 1 (OR, NAND,
and both IMPLY gates), and “AND-type” logic applies when both
ηZ1 < 1 and ηZ2 < 1 (AND, NOR, and both NIMPLY gates). This can
be seen mathematically by using Boolean logic simplification. For
example, X NOR Y= NOT X AND NOT Y. Similarly, X NAND Y=
NOT X OR NOT Y.

It is important to note that this logic scheme is an
approximation, and in reality the sum of two Hill terms provides
a form of fuzzy logic73. That is, if the inputs X or Y are close to 1,
or if the regulatory strengths ηZ1,2 are close to 1, then Z will also
be close to 1 for some input combinations (Supplementary
Note 5).

Note that if X(T) and Y(T) are independent, they can be time-
shifted in Eq. (19) by γ1 and γ2, respectively, showing that the
dynamics do not depend on delays. This is not true if X and Y are
dependent (e.g., X= Y), which leads to interesting dynamics that
we examine below in feedforward loops and double feedback.

Motif IV: feedforward loop. Equipped with a multivariable
generalization of 1-variable Hill regulation (Eq. (19)), we turn our
attention to the feedforward motif (Fig. 6), a non-cyclic regulation
network in which an input, X, regulates an output, Z, via two
separate regulation arms. One arm is “direct”, in which X reg-
ulates Z in a single step, while the second arm is “indirect”, with X
regulating an intermediate Y, which in turn regulates Z. In this
way, the first arm “feeds forward” past the cascade (Fig. 6a–b).
The motif is found commonly in biological networks6,74, com-
prising about 30% of three-gene regulatory interactions in tran-
scriptional circuits75. Feedforward loops are conventionally
described as “incoherent” if X activates Z through one arm but
represses through the other, and “coherent” otherwise (Supple-
mentary Table 3). In this section, we show that the essential
behaviors of feedforward loops are due to a difference in delays
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between the two inputs to Z and the logic function between the
two inputs to the output Z.

Feedforward dynamics depend only on the difference in time delay
between two regulatory arms and their 2-input logic. With a DDE
model, we can drop the cascaded intermediate Y, focusing
solely on Z as regulated by X via two arms that have unequal

delays (Fig. 6a, b). Looking at Fig. 6a, we can then write down a
simple equation for the regulation of Z, by setting Y= X in Eq.
(19) (Supplementary Note 6):

_ZðTÞ ¼ η1
1þ Xn1ðT � γ1Þ

þ η2
1þ Kn2Xn2ðT � γ2Þ

� ZðTÞ: ð20Þ

Because each regulation term is controlled by the same input
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(X), we cannot in general normalize the half-maximal input to 1
in both terms as we did for logic (Eq. (19)); K= k1/k2 represents
the ratio of the two input scales. Likewise, we cannot entirely
time-shift out the delays; instead, shifting X backwards in time
by γ1 (X̂ðTÞ ¼ XðT þ γ1Þ), we see that the behavior of the
feedforward equation actually depends only on the difference in
regulatory delays, Δγ= γ2− γ1 rather than each delay inde-
pendently:

_ZðTÞ ¼ η1
1þ X̂

n1ðTÞ þ
η2

1þ Kn2 X̂
n2ðT � ΔγÞ � ZðTÞ: ð21Þ

For clarity we will from now on refer to X̂ as X without the hat
unless specified.

To understand the behavior of Eq. (21), we will analyze the
output of Z to two types of input X: a step input, and a
continuous oscillation. Termed the step and frequency responses,
respectively, these are often used in control theory to characterize
input-output relations76.

Step-pulse response of feedforward motifs can be solved analytically
and demonstrates filtering and pulse-generation behaviors. We
considered a step input (Fig. 6c) to include both a step on (from
low to high X) as well as a step off (from high to low X):

XðTÞ ¼ X0 þ ðηX � X0Þ ΘðTÞ � ΘðT � ωÞð Þ ð22Þ

where the Heaviside function is defined such that Θ(T)= 0 for
T < 0 and Θ(T)= 1 for T > 0. Eq. (22) represents a square input
pulse of width ω starting at X0 and reaching to ηX. This is an on-
pulse if ηX > X0 and an off-pulse if ηX < X0.

The lack of feedback in feedforward loops and the fact that the
square-pulse input of Eq. (22) takes on only two values simplify
the form of Eq. (20) significantly, allowing it to be solved
explicitly (Supplementary Note 6). The solution is:

ZðTÞ ¼ Zss þ sgn ðn1Þη1Zn1
1 f ðTÞ þ sgn ðn2Þη2Zn2

K f ðT � ΔγÞ
ð23Þ

in which

f ðTÞ ¼ 1� e�T
� �

ΘðTÞ � 1� e�ðT�ωÞ
� �

ΘðT � ωÞ

Zss ¼
η1

1þ Xn1
0

þ η2
1þ KX0ð Þn2

Zn
κ ¼

1

1þ κηX
� �jnj � 1

1þ κX0ð Þjnj
:

ð24Þ

Here, Zss is the steady-state value of Z, Z
n
κ are the magnitudes of

deviation from steady state due to each arm, and f(T) specifies
where the responses from the two regulation arms are active. In
terms of the original X (as opposed to the time-shifted X̂), the
output in Eq. (24) is shifted to the right in time by γ1 relative to
the original input X(T).

There are several interesting results to note in this equation.
First, the cooperativities (n1, n2) and thresholds (K) affect the
response magnitude, but not the dynamics (f), because the input
signal is already infinitely steep.

Second, the η values only affect the steady-state Zss and the
response logic (as sgn ðniÞηi, see logic discussion). Only 8 logic gates
correspond to feedforward loops, in that they respond to both
inputs: the four AND-type functions and four OR-type functions.

Third, f indicates where responses are active, varying from 0 far
outside a pulse, aprroaching 1 inside for wide pulses (ω≫ 0). The
output then has four responses (pulse start and pulse end for each
arm), in which Z moves away from Zss by as much as Zn

κ (pulse
on) before returning (pulse off). Responses must be driven
externally, unlike autoregulation.

For coherent feedforward motifs, input pulses must be
sufficiently wide (ω≫ 1) to fully activate the output R. This implies
that coherent feedforward motifs act as filters against short signals,
either short on signals (AND and NAND) or short off signals (OR and
NOR). The delay difference Δγ determines how quickly the response
starts (AND and NOR logic) or returns to baseline once the pulse is
over (for OR and NAND logic), so that large Δγmaintains a response
long after the input pulse has subsided.

For incoherent feedforward motifs, the output R is only fully
activated if the pulse is wide (ω≫ 1) and the delay difference is
also wide (Δγ≫ 1), in which case a pulse of output is formed. The
output pulse is formed on either the on-step (slow arm IMPLY
fast arm, and slow arm NIMPLY fast arm) or the off-step (fast
arm IMPLY slow arm, and fast arm NIMPLY slow arm). This
means that incoherent feedforward motifs act as pulse generators.
The delay difference Δγ determines the minimum width of input
pulse that will produce a response in R.

Many of the feedforward behaviors described in this section
corroborate earlier results from ODE models2,2,58,74,75,77,77,78, but are
derived here with just a single equation. In particular, it is well known
that coherent feedforward loops have filter capabilities and that

Fig. 5 A simple approximation for digital logic using a sum of Hill terms recapitulates all monotonic logic functions in a single parameter space. a A
prototypical regulatory network involving logic where X and Y both regulate Z, which must integrate the two signals using some logic before it can in turn
activate a downstream reporter R. b Parameter space showing regions where regulation approximately follows 14 of the 16 possible 2-input logic functions
depending on the strength of two single-variable Hill regulation terms (ηZ1: regulation of Z by X, ηZ2: regulation of Z by Y). Network logic can be smoothly
altered by varying the parameters (ηZ1, ηZ2), with a change of sign in (n1, n2) required to switch quadrants. The bottom-left quadrant shows that very weak
regulation in both terms leads to an always-off (FALSE) function, weak regulation in one arm only leads to single-input (X, Y) functions, strong regulation
in both arms leads to an OR function, and regulation too weak in either arm alone to activate an output but strong enough in sum leads to an AND function.
The other three quadrants are related by applying NOT to one or both inputs, with function names related by de Morgan’s law70 NOT(X OR Y) = NOT X
AND NOT Y. In particular, X IMPLY Y = NOT(X) OR Y, X NIMPLY Y = X AND NOT(Y), X NOR Y = NOT X AND NOT Y, and X NAND Y = NOT X OR NOT Y.
Truth tables for all 16 logic gates are provided in Supplementary Table 1 for reference. The two non-monotonic logic functions, X XOR Y and X XNOR Y, are
those 2 of 16 not reproduced directly using this summing approximation. They can be produced by layering, e.g., NAND gates70. c Representative time
traces for AND (ηZ1= ηZ2= 0.9) and OR (ηZ1= ηZ2= 1.8) gates with n1= n2=−2, n3=−20, ηR= ηZ1+ ηZ2. The function sgn ðnÞ ¼ þ1 when n > 0,
sgn ðnÞ ¼ �1 when n < 0.

Table 1 NAND Logic function for two repressors based on
Eq. (19).

ηX ηY Z* Z* for ηZ1,2 > 1

≪ 1 ≪ 1 ηZ1+ ηZ2 >1
≪ 1 ≫ 1 ηZ1 þ ηZ2=η

n2
Y >1

≫ 1 ≪ 1 ηZ1=η
n1
X þ ηZ2 >1

≫ 1 ≫ 1 0 <1
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incoherent feedforward loops can act as pulse generators
(temporal2,58,77 or spatial79). We did not demonstrate fold-change
detection (FCD)78 because of our use of sum-like logic; an alternative
logic formulation does show FCD, implying that FCD has certain
mechanistic requirements (Supplementary Note 6). Furthermore, we
clearly demonstrated that the feedforward loop dynamics depend

entirely on the difference of delays in the two regulation arms, a fact
that can only be seen indirectly with ODE models58.

Frequency response of feedforward motifs can be solved analytically
and demonstrates low- and band-pass filtering capabilities. Biological
regulatory networks often encode information as the change in
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frequency of an oscillating input80, which has been suggested to be
more robust to noise than encoding information in absolute con-
centration81–83. That feedforward loops filter short square pulses
suggests more general frequency-filtering capabilities. We therefore
analyze feedforward frequency response to sinusoidal input
(Fig. 6d–g). We show that the response follows the outline of a
universal transfer function curve, independent of the logic or delay
difference.

Instead of the step input analyzed above, here we consider a
sinusoidal input

XðTÞ ¼ Að1þ cosð2πfTÞÞ ð25Þ
which oscillates between zero and 2A (twice the amplitude) at a
frequency f > 0. Taking the Fourier decomposition of each Hill-
regulated term 1/[1+ Xn(T)] and plugging into the governing Eq.
(21) (Supplementary Note 6) provides the output Z(T) in terms of
its magnitude Ik and phase ϕk as a function of frequency:

ZðTÞ ¼ η1a
x;n1
0 þ η2a

x;n2
0

2
þ
X1
k¼1

Ik cosð2πkfT � ϕkÞ

Ik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη1ax;n1k Þ2 þ 2η1η2 cosð2πkfΔγÞax;n1k ax;n2k þ ðη2ax;n2k Þ2

1þ ð2πkf Þ2

s

ϕk ¼ atan2 2πkf η1a
x;n1
k þ η2ð2πkf cosð2πkfΔγÞ þ sinð2πkfΔγÞÞax;n2k ;

�
η1a

x;n1
k þ η2ðcosð2πkfΔγÞ � 2πkf sinð2πkfΔγÞÞax;n2k

�
;

ð26Þ
where ax;nk are Fourier coefficients of Hill-regulated terms 1/[1+
Xn(T)] at integer multiples k of the fundamental frequency f:

ax;nk ¼ 1
π

Z 2π

0

cosðkTÞ
1þ Anð1þ cosðTÞÞn dT; ð27Þ

for all f > 0. Note that the magnitudes are symmetric to
interchange of the two regulation arms (η1↔ η2, n1↔ n2), while
the phases are not.

Looking at frequencies that are integer multiples of 1/Δγ, we
can see that both the magnitudes and phases follow a universal
envelope not dependent on delays or logic (i.e., no dependence on
γ or η values):

Ik;env ¼ I0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2πkf Þ2

q
ϕk;env ¼ tan�1 2πkfð Þ � ϕ0

ð28Þ

where (from Eq. (26), at k= 0 or f→ 0) I0 ¼ η1a
x;n1
k þ η2a

x;n2
k and

ϕ0 ¼ πðsgn I0 þ 1Þ=2. The actual magnitudes and phases are then
modulated from these envelopes with period 1/kΔγ. The
fundamental-frequency (k= 1) response (the largest magnitude,
see Fig. 6d, e) are shown compared to the envelopes in Fig. 6f
(known as Bode plots76).

At frequencies f that are integer multiples of 1/kΔγ, the cosine
in Ik equals ±1. Because ax;�n

k ¼ �ax;nk (see Eq. (27),

Supplementary Note 6), the output magnitude Ik then increases
to a local maximum for coherent feedforward motifs
(sgn ðn1Þ ¼ sgn ðn2Þ) and decreases to a local minimum for
incoherent feedforward motifs (sgn ðn1Þ ¼ �sgn ðn2Þ). The
opposite holds for frequencies that are half-integer multiples of
1/kΔγ. For the special case of perfectly balanced incoherent
feedforward motifs (η1= η2, n1=−n2, K= 1), the magnitudes Ik
decrease to zero for frequencies that are half-integer multiple of 1/
Δγ; otherwise, the maxima (for coherent) and minima (for
incoherent) equal Ik(f= 0).

Incredibly, the envelopes (relative to f= 0) have zero parameters,
making them universal to all feedforward loops. The frequency at
which the magnitude decreases to one-half its value at f= 0 occurs
at f ¼ ffiffiffi

3
p

=2πk, with a phase shift of−π/3.
Despite the non-dependence on Δγ, the absolute maximum

magnitude obtained for incoherent feedforward motifs does
depend on Δγ, as does the frequency at which this maximum
response occurs. The dependence on delay difference is
particularly strong near Δγ= 1 (Fig. 6g). This is because for
Δγ≫ 1, the envelope decreases by half when f is many multiples
of Δγ, and thus past many local maxima. The local maximum
then occurs at 0 < f≪ 1 with a maximum above Ik(f= 0). For
Δγ≪ 1, on the other hand, the envelope decreases by half before
a single sinusoid is complete, so the maximum is at f→ 0.

At Δγ ≈ 1, the first sinusoid reaches its maximum while the
envelope is descending most steeply, and the maximum occurs at
f ≈ 1 with a value highly dependent on Δγ. To activate R, X must
go above 1 for at least part of the output oscillation, meaning that
I1 must go above 1− 〈I〉= 1− I0. Looking at Fig. 6g, we see that
for large Δγ≫ 1, this occurs for small frequencies, and the
feedforward loop acts as a low-pass filter. However, there is a
window of Δγ ≈ 1 in which 1− I0 is large, at modest frequencies
(0.1 < f < 10), corresponding to the hump in magnitude, e.g.,
around f= 0.5 for Δγ= 1 in Fig. 6f. The incoherent feedforward
motif thus acts as a bandpass filter for Δγ ≈ 1, with ineffective
regulation outside of modest frequencies.

For coherent feedforward motifs, the frequency at which the
first minimum in output response occurs follows the same logic,
but the maximum response is always found at f→ 0. Since the
maximum response is at low frequencies, coherent feedforward
motifs act as low-pass filters, as has been shown to be a basic
expected behavior of chemical networks84.

Motif V: multi-component feedback. The common two-
component feedback motif58 is the equivalent of a cascade with
feedback (Fig. 7a). We can write down the governing equations
for such a system, using the same normalizations as before (see
Supplementary Note 7), assuming for simplicity zero leakage and
that x and y have the same degradation rates β. This is equivalent
to the 3-step cascade Eq. (8) with equal degradation rates and

Fig. 6 The feedforward network motif owes its primary functions to a difference in regulatory delays. a The feedforward motif with delays, in which a
single output Z is controlled by an input X via two regulatory arms with differing delays. The straight, short arrow represents the “direct arm” with delay γ1
and the longer, curved arrow represents the “indirect arm” with delay γ2 > γ1. b The ODE model for an incoherent (type 1) feedforward motif, one of 8
possible networks in which the intermediate gene Y is modeled explicitly in the indirect arm. c Simulations of the four feedforward motifs with AND-type
and OR-type logic (Fig. 5 and Supplementary Table 1) in response to short and long gain and loss of input signal. Blue curves: inputs (X), orange curves:
reporter R activated with high cooperativity by Z. Note that the bottom two rows demonstrate pulse generation, while the top two rows filter short signals.
d Response of an incoherent feedforward motif to oscillatory input after initial transients have died away. Z3 is a 3-frequency Fourier approximation of Z
(see E). e Fourier decomposition of Z from (d) by Eq. (26) and by a numerical fit to the data in (d). f Frequency scan (Bode plot) of (d) for 3 values of Δγ,
with the theoretical envelopes from Eq. (28). g The maximum amplitude of the motif in (d) over a range of Δγ and the corresponding frequencies at which
the maxima occur. Z goes above 1 (activation threshold for R) for a small range of Δγ. For (c–f), η1= 0.9, η2= 0.7, n1= 2, n2=−2, n3=−20, ηR= 2, A= 1.
For d, f= 0.05, Δγ= 4.
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setting Z= X to form the loop.

_XðTÞ ¼ η1
1þYn1 ðT�γ1Þ � XðTÞ

_YðTÞ ¼ η2
1þXn2 ðT�γ2Þ � YðTÞ: ; ð29Þ

The fixed points are given by η1 ¼ Xð1þ Yn1Þ, η2 ¼ Yð1þ
Xn2Þ or (for two activators) X= Y= 0. Linearizing around these
fixed points and assuming ansatz solutions of the form
δXðTÞ ¼ A expðλ1TÞ; δYðTÞ ¼ B expðλ2TÞ, we find the set of
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characteristic equations

Aðλþ 1Þ þ η1M1Be
�λγ1 ¼ 0

Bðλþ 1Þ þ η2M2Ae
�λγ2 ¼ 0:

ð30Þ

where λ1= λ2≡ λ must hold for the ansatz to be true for all time.
This can be rewritten in matrix form, with a matrix J times the
vector (A, B)⊤.

Diagonalizing J results in two characteristic equations (Sup-
plementary Note 7)

Λ± � λ±
ffiffiffiffiffiffiffiffiffiffiffi
η1M1

p ffiffiffiffiffiffiffiffiffiffiffi
η2M2

p
e�λðγ1þγ2Þ=2 þ 1 ¼ 0 ð31Þ

for two corresponding eigenmodes vþ ¼ ð1;ReiϕÞ> and

v� ¼ ð�1;ReiϕÞ>, respectively, where B/A= Reiϕ is the ratio of
δX to δY components in magnitude-phase notation (Supplemen-
tary Note 7). Overall, the eigenvectors indicate a phase difference
between X and Y of ϕ for v+ and ϕ+ π for v−. When the Λ+
version of Eq. (31) is satisfied for Re λ ¼ 0, v+ bifurcates and
when the Λ− version is satisfied for Re λ ¼ 0, v− bifurcates.

Saddle-node bifurcations determine bistability modes. For saddle-
node bifurcations, at which bistability begin, we set λ= 0. This
can only be satisfied by the Λ+ version of Eq. (31) if n1 < 0, n2 < 0
(two activators), and by the Λ− version if n1 > 0, n2 > 0 (two
repressors). A feedback loop of an odd number of repressors
cannot have a saddle-node bifurcation. As for linear cascades
(Fig. 3), the overall autoregulation is repressive only if it contains
an odd number of repressors. The bistability boundary for both
cases is then given by (Supplementary Note 7):

η1 ¼ n1n2
Xn2þ1

ðn1n2 � 1ÞXn2 � 1

η2 ¼ n1n2
Yn1þ1

ðn1n2 � 1ÞYn1 � 1

f ðX;YÞ � n1n2X
n2Yn1

1þ Xn2ð Þ 1þ Yn1ð Þ ¼ þ1

ð32Þ

where f= 1 provides an implicit monotonic mapping between X
and Y that restricts η1(X) with respect to η2(Y).

The phase difference ϕ= 0, implying that two-activator loops
show bistability with X and Y either both high or both low,
because the components of v+ are of like sign, whereas two-
repressor loops (v−) show bistability with X high and Y low or
vice versa (Fig. 7b, d).

Hopf bifurcations determine transient oscillations in modes
restricted by bistability. For Hopf bifurcations, at which oscilla-
tions begin, we set λ= iω. The boundaries are given for both

eigenmodes by (Supplementary Note 7)

γ1 ¼
1
ω

�tan�1ωþ ϕþ π

2
ð1� sgn n1Þ þ πk

h i
; k ¼ 0; 1; ¼

γ2 ¼
1
ω

�tan�1ω� ϕþ π

2
ð1� sgn n2Þ þ πk

h i
; k ¼ 0; 1; ¼

η1 ¼
jn1n2j
1þ ω2

� Xn2þ1

jn1n2j
1þω2 � 1

� �
Xn2 � 1

η2 ¼
jn1n2j
1þ ω2

� Yn1þ1

jn1n2j
1þω2 � 1

� �
Yn1 � 1

f ðX;YÞ � jn1n2j
1þ ω2

� Xn2Yn1

1þ Xn2ð Þ 1þ Yn1ð Þ ¼ 1

ð33Þ
where again f= 1 provides an implicit monotonic mapping η1(X)
and η2(Y).

These curves lie above the bistability boundary, so oscillations in
v+ are not observed for two activators nor in v− for two repressors.
The alternate eigenmode does show oscillations in each case (k= 0,
v− for activators and k= 1, v+ for repressors), but these oscillations
are transient due to existence of bistability-induced, distant stable
fixed points. For one repressor and one activator, sustained
oscillations begin at k= 0 for v−, with ϕ=−π/2 if n1 > 0, n2 < 0
(Y leads X) and ϕ= π/2 if n1 < 0, n2 > 0 (Y lags X).

Based on Eq. (33), we can see that the primary Hopf
bifurcations are equivalent for differing values of the delays as
long as the average delay is equal, because the oscillation
frequency ω of the eigenmodes only depends (implicitly) on the
average delay:

hγi � 1
2

γ1 þ γ2
� � ¼ 1

ω
�tan�1ωþ π

4
ð2� sgn n1 � sgn n2Þ þ πk

� �
:

ð34Þ
In particular, oscillations are possible for activator-repressor

loops even when one delay is zero, as long as the sum of delays is
greater than zero. On the other hand, the phase difference
between the oscillations depends only on the difference in delays
given the value ω:

ϕ ¼ ω

2
ðγ1 � γ2Þ þ

π

4
sgn n1 � sgn n2ð Þ ð35Þ

Together with the additional phase difference of π for v−, this
implies that for equal delays, there are synchronous oscillations
for two-repressor loops, anti-synchronous oscillations for two-
activator loops, and π/2-shifted oscillations for activator-repressor
loops. This phase relation also holds off the bifurcation boundary,
where λ= μ+ iω, as ϕ does not depend on μ (Supplementary
Note 7). Note also that the overall phase in the expressions for γ
are 0 for two repressors, π for two activators, and π/2 for
activator-repressor loops.

Fig. 7 Two-component autoregulatory loops reproduce behaviors of autoregulation, but have additional behaviors describing the relative dynamics
of the components. a A two-component loop network motif, which is similar to autoregulation but with two explicitly modeled genes instead of one.
b Parameter space of the two regulatory strength parameters showing phase diagram for a loop composed of two activators (cross-activating) or two
repressors (cross-inhibitory). Shading shows results of simulations (with an interval of 0.1 for both γ and η axes); blue curve is the analytically derived
phase (bifurcation) boundary from Eq. (32). c Parameter space varying both strength parameters. Because the Hopf bifurcations depend only on the total
delay and transient oscillations most prominent for equal delays, we show only the cases γ1= γ2. Blue curves show analytically derived Hopf bifurcations.
Black dashed curves are the bifurcation boundaries from (b). Except for the activator/repressor case, all these curves lie above the bistability boundary
given by the black curve in (b), meaning oscillations are always transient. d Representative simulations for specific initial conditions showing all possible
qualitative behaviors for a two-component loop with two activators, two repressors, or one activator and one repressor. For two-activator bistability and
oscillations, a second set of initial conditions is shown in dashed lines to demonstrate the bistability. Hill coefficients equal 2 for repressors, −2 for
activators.
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Finally, one can also conclude from Eq. (30) that (Supplemen-
tary Note 7)

λ ¼ 1
γ2 � γ1

ln
η1M1B

2

η2M2A
2

� �
; ð36Þ

which holds for both the real and imaginary parts of λ. This implies
that the oscillations grow most quickly and have the highest
frequency when the delays are nearly equal (γ1= γ2). This
consequently makes the transients most noticeable for equal delays.
All these results can be seen in the simulated data (Fig. 7b,d).

Motif VI: double feedback. Multiple feedback (Fig. 8) has been
described to lead to interesting dynamics, such as excitablity85,
quasiperiodicity71, and chaos71. A full analysis of this motif is
beyond the scope of this work, for reasons described below.

We focus on chaos, a dynamical behavior characterized by
irregular, unpredictable oscillations45. It has been suggested that
biological systems avoid chaos86,87, but also that chaos can
describe pathological dynamics such as irregular breathing26 and
epilepsy27. There may also be cases where chaos is important to

biological function88–91. Mathematical models with71,92,93 and
without86,94 delays can be chaotic.

Chaotic behaviors are prevented in monotonic regulation with
linear or cyclic network topology. Due to cyclic network topology
(no more than one loop) and monotonic regulation, none of the
motifs so far can yield chaotic dynamics46. Either non-monotonic
feedback (as in the Mackey-Glass equation26) or non-cyclic
topology71 is required for chaos. Double feedback (Fig. 8a) is a
minimal motif fulfilling both requirements, although the non-
monotonicity is sufficient (Supplementary Note 8).

The governing equation for such a double feedback motif is
thus given by setting the output and both inputs of the logic
equation (Eq. (19)) to X (and letting K= 1 for simplicity):

_XðTÞ ¼ η1
1þ Xn1ðT � γ1Þ

þ η2
1þ Xn2ðT � γ2Þ

� XðTÞ: ð37Þ

Chaotic behavior is possible for non-monotonic feedback with
multiple feedback and disparate delays. Simulation of Eq. (37)
demonstrates chaos for some parameters of positive/negative

Fig. 8 Positive/negative dual feedback can induce chaotic behavior when the difference in delay times is significant. a The double feedback motif, in
which two regulation arms feed back directly, each with its own explicit delay. Here we show one arm activating and one repressing; for double repressive
feedback, see Supplementary Fig. 5. b Time trace of chaotic dynamics after initial transients. c Trace of dynamics in phase space, with the derivative on the
vertical axis. While a simple oscillator would trace a loop (possibly with multiple sub-loops if the waveform is complicated), the chaotic dynamics appear to
trace out a fractal attractor. Consistent with chaos, a reconstructed phase space with coordinates (X(T), X(T− 10), X(T− 20)) traces out a fractal
attractor, with box dimension 1.81 with 95% confidence interval (1.76, 1.87) and a positive dominant Lyapunov exponent (0.0040 ± 0.00055 bits), see
“Methods” for details. d Fourier transform of chaotic dynamics show many peaks, indicating that there is no simple set of frequencies underlying the
dynamics. e Bifurcation diagram for double positive/negative feedback, with local maxima plotted. Simple oscillations intersperse regimes with complex
dynamics, where local maxima with a range of values are found. η1= 15, η2= 1, n1= 11, n2=−3, and γ1= 1. For (b–d), γ2= 11.
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mixed feedback, as evidenced by sustained oscillations with
variable maxima (Fig. 8b), occupying an apparently fractal region
in phase space (Fig. 8c), and a large number of peaks in frequency
space (Fig. 8d). To confirm that the dynamics are in fact chaotic,
we calculated the dominant Lyapunov exponent using the Wolf
method95 (see “Methods”), finding a positive (i.e., chaotic) value
of 0.0040 ± 0.00055 bits (mean ± standard deviation). We also
calculated the box dimension of a reconstructed phase space with
coordinates (X(T), X(T− 10), X(T− 20)) used by the Wolf
method, yielding fractional dimension ~1.81, with 95% con-
fidence interval (1.76, 1.87). These results indicate chaos (see
Supplementary Fig. 4).

Varying γ2 relative to γ1= 1 (Fig. 8e) shows regions of
presumably chaotic dynamics interspersed with simple oscilla-
tion, as found in many chaotic systems45. In particular, we only
find chaos if the delays in the two arms differ substantially. Both
delays appear to be important, not only their ratio or difference,
since no oscillations exist when both delays are less than one. A
full exploration of the two-delay parameter space is left to
future work.

In constrast, we found quasiperiodic dynamics for dual
negative feedback (Supplementary Fig. 5). Qualitatively, the time
dynamics appear less pulsatile (Supplementary Fig. 5b) than dual
positive/negative feedback, in line with reports that dual positive/
negative feedback demonstrates excitability85. The attractor also
has a somewhat different profile (Supplementary Fig. 5c) that in
reconstructed space (X(T), X(T− 10), X(T− 20)) traces out a
torus with box dimension ~2 and near-zero Lyapunov exponent
(see Supplementary Fig. 4), indicating quasiperiodic rather than
chaotic dynamics. The Fourier spectrum also exhibits a less dense
set of peaks (Supplementary Fig. 5d).

Many parameter choices can prevent chaos in dual feedback.
Double autoactivation (n1 < 0, n2 < 0) prevents chaos via a
stable fixed point (X= 0)45. Identical regulation strength and
cooperativity (η1= η2, n1= n2) behaves like autoregulation close
to fixed points, with γ= γ1+ γ2, as do identical delays (γ1= γ2),
with ηM= η1M1+ η2M2 (Supplementary Note 8). Thus, for
chaotic solutions to occur via double feedback, there must be at
least one negative feedback arm, the delays must differ, and either
the cooperativities or strengths must differ. If biological systems
evolved to avoid chaos86,87, it may be that these conditions are
selected against, even if the double-feedback motif is not.

The complete parameter space for double feedback is likely to
be highly complex, with boundaries possibly formed via an infinite
number of bifurcation curves48. In particular, while we demon-
strated chaotic and quasiperiodic dynamics for specific parameter
values, a more in-depth exploration is warranted to fully
understand the dynamics for all parameters. For further explora-
tion of double negative feedback and more complex delayed
network motifs that exhibit chaotic dynamics, see Suzuki et al.71.

Discussion
In this work, we systematically studied the most common net-
work motifs (Table 2) by use of DDEs. Compared to the more
widely used mechanistic ODE descriptions, we demonstrated
numerous instances where inclusion of explicit delays simplifies
complex systems into smaller motifs while continuing to capture
their key dynamics that are otherwise lost in simplifying complex
systems as small motifs. To further modeling simplicity, we
also identified unifying descriptions for activators and repressors
(Eq. (7)) and for boolean Hill function logic (Fig. 5) that are
useful for both DDE and ODE models.

There are multiple findings to highlight. First, multistep
cascades with and without feedback reduce effectively to direct,
delayed regulation, providing an intuitive interpretation of

biological delays as resulting from multi-step processes, and
establishing analytical relationships for converting between
parameters of the corresponding ODE and DDE models. Sec-
ond, delays determine many key motif properties, such as the
oscillation period in negative autoregulation, and pulse width
and frequency cutoff in feedforward motifs. Interplay of mul-
tiple delays plays a similar role in multi-component feedback
for determining absolute and relative oscillation periods, and in
multiple feedback for determining chaotic dynamics. Third, we
showed quantitatively not only when delays are crucial to
behavior, as in oscillations, but also when they may be safely
ignored. Delays do not affect steady states or logic of inde-
pendent inputs, only a difference of delays between regulation
arms is important in determining feedforward behavior, and
only the sum of delays determines the onset of transient
oscillations in feedback loops.

Using DDE models to contract a network into a much
smaller network with equivalent topology (replacing all cas-
cades with delayed, direct regulation) may aid in discovery of
large-scale motifs that have important functions or that might
otherwise be perceived as statistically insignificant. The motifs
in this paper were originally discovered by scanning biological
networks for subnetworks of N nodes that occur more fre-
quently than expected by chance6,11 (this in fact being the
original definition of network motifs). However, this discovery
method becomes increasingly difficult for N ≳ 5 due to the
combinatorial scaling of the number of possible motifs96. Per-
forming a similar search on contracted networks would be
equivalent to searching the original network for larger motifs,
and places a stronger emphasis on topology than on number of
components involved (e.g., X→ Z being equivalent to X→
Y→ Z). While this can be done without DDEs, the introduction
of delays allows one to perform the contraction while main-
taining key information about the original dynamics of retained
components.

While our work has focused on the most basic network motif
topologies (Table 2), the same techniques can be applied to other
more complex networks. Expanding on the eigenmode analysis
we performed for multi-component feedback loops, one can
describe the linear behavior of an arbitrary network near its fixed
points by a matrix form of the characteristic equation Ja ¼ 0 with
J ij ¼ ðλþ 1Þδij þ ηjMje

�γijλ (Supplementary note 9, Supplemen-
tary Fig. 6). This approach allows simple models to provide
detailed predictions of complex biological phenomena such as
pattern formation23.

To clarify the basic role of delays in network motifs, we
ignored several phenomena which we suggest that future
work explore. These include: (1) Noise, which is intrinsic to
many biological systems97 and known to affect dynamics of
delay equations15,92,98,99. (2) Time-varying and stochastic
delays42,47,98,100. (3) Non-constant initial conditions (“his-
tories”) for T < 0; for example, autorepression shows in-phase
and anti-phase locking with constant histories, while sine-wave
histories with randomized phase do not (Supplementary Fig. 7).
(4) Non-Hill regulation and complex degradation
functions26,78, such as zeroth-order101, nonlinear102, or delayed
removal, as well as diffusion or spatial effects103. (5) Feedback
with multiple delays, which we only briefly analyzed in the
double feedback motif, and likely have very complicated para-
meter spaces48,49.

Overall, we believe that our work may help resolve funda-
mental biological and engineering questions regarding a variety
of phenomena, including transcription factor networks6,17,77,
cell cycles87, other biological clocks14,18,25, and pattern
formation23,44. Multiple feedback analysis may determine
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whether chaos affects the cell cycle87, or whether biology avoids
possibly chaotic motifs. Delays in multicellular signaling23,32 may
distinguish among models of pattern formation16,24,32,103,104.
Finally, exploring “contracted” networks with delays may uncover
entirely new functional network motifs that are larger and more
complex than currently known96.

Methods
Analytics and numerical simulation. Analytics were in general performed by
hand, and checked for validity using Mathematica. Numerical simulations were run
in Matlab using the dde23 delay differential equation solver for DDEs and ode45
for ODEs. Simulating activators as repressors with n < 0 technically fails when x is
identically zero (Eq. (5)), since that would imply division by zero, but the limit as x

goes to zero causes the regulation term to be zero, which is the same result as
assumed by our notation. An initial value of exactly zero for x can thus lead to a
divide-by-zero error in simulations, and so initial conditions of exactly zero were
not used, as that case is an uninteresting fixed point for activators in any case. Note
also that the consitutive case for Eq. (5) is degenerate, in that n= 0, α ≠ 0 is
equivalent to n ≠ 0, α= 0 with α0→ α0+ α/2.

Phase plot simulations and analysis. For autoregulation phase plots, simulations
were run with 100 constant-history initial conditions spread logarithmically
between 10−4 and 2η and run from T= 0 to T= 100(γ+ 1). Solutions were
considered stable if for all 100 simulations the maximum absolute value of the
discrete derivative in the last three-quarters of the simulation time was less than
0.1. Stable solutions were sub-categorized as bistable if a histogram of final values
over all 100 solutions had more than 1 peak. Solutions were considered oscillatory

Table 2 Summary of differences between ODE and DDE network regulation models and key findings, and where each DDE
cartoon provides a simplified, unified model for several ODE cartoons.

Motif ODE Cartoons DDE Cartoons Equations Key Findings

0: Direct
regulation

Eq. (5) Activators and inhibitors combined via negative Hill
coefficient. Delay provides explicit timescale. Figure 2.

I: Cascade Eq. (9) ODE cascades can be reduced to simple DDE
regulation. Delays sum. Figure 3.

II: Autoregulation Eq. (11) Full parameter space derived. Delays matter only for
negative autoregulation. Figure 4, Supplementary
Fig. 3, Supplementary Fig. 1, Supplementary Fig. 2.

III: Logic Eq. (19) Sum of Hill terms yields all monotonic logic gates in
one parameter space. Delays not important for steady
states, only strengths. Figure 5, Supplementary
Table 2, Supplementary Table 1.

IV: Feedforward
loop

Eqs (20),
(21)

Capable of pulsing, signal filtering by input pulse width
or frequency. All signal processing behavior is due to
logic and difference in delays between arms. Figure 6.

V: Feedback loop Eq. (29) Delay sum governs presence of oscillations, which are
transient for two repressors (synchronous) and two
activators (anti-synchronous). Delay difference
governs phase. Full parameter space derived. Figure 7.

VI: Double
feedback

Eq. (37) Chaos and quasiperiodicity possible for two-delay
feedback and not for simpler motifs46,71. Figure 8,
Supplementary Fig. 5. Future work.

Complex
networks

Eqs S84,
S85, S87

Matrix analysis available (Supplementary note 9,
Glass, et al.23). Complex dynamics and spatial
behaviors possible. Future work. Supplementary Fig. 6.
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if the average Fourier transform of the last three-quarters of the simulation time for
all 100 solutions had more than zero peaks with amplitude (square root of power)
greater than 100. Solutions were considered spiral if this oscillation condition held
for the first one-quarter of the simulation time only. For two-component loops,
initial conditions were used that ranged between 0 and maxðη1; η2Þ, for equal X and
Y and for apposing X and Y. Bistability was determined as for autoregulation, and a
cutoff of 0.05 was used to determine “low” values. All simulation histories were
constant except where indicated in Supplementary Fig. 7. Specific parameter values
and simulation details are given in the figures and/or made explicit in the
MATLAB code in Supplementary Data 1.

Lyapunov exponents and box dimensions. For calculating dominant Lyapunov
exponents, we used the Wolf method95 with recommended parameters from the
MATLAB script “Wolf Lyapunov exponent estimation from a time series” (version
1.2.0.1) provided by the authors on the Mathworks FileExchange (https://www.
mathworks.com/matlabcentral/fileexchange/48084-wolf-lyapunov-exponent-
estimation-from-a-time-series). In particular, we used an embedding dimension of
3 and a phase space reconstruction delay of 10 for a dataset with ~350 orbits of
~50–60 data points per orbit. The last 50 iterations of the algorithm were used to
generate a mean and standard deviation of the estimated dominant Lyapunov
exponent. A full set of parameters can be found in the included code. For calculating
attractor dimensions, we used the box-counting method, whose code is also pro-
vided in Supplementary Data 1, on the reconstructed phase space (X(T),X(T− 10),
X(T− 20)) used for calculating Lyapunov exponents. A linear regression was per-
formed using MATLAB’s fit function on half the linear domain to generate a mean
and confidence interval (using MATLAB’s confint) for the slope (i.e., box
dimension) between numbers of boxes covering the attractor versus length of
each box.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw data is included in the supplementary material (Supplementary Data 1). The
authors can confirm that all relevant data are included in the paper and/or its
supplementary information files. Source data are provided with this paper.

Code availability
All code used to generate data for this work is included in the supplementary material
(Supplementary Data 1). The authors can confirm that all relevant code is included in the
paper and/or its supplementary information files.
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